Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Fructose Metabolism
Escherichia coli K-12
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2025-01-02
Last Updated: 2025-01-02
Fructose metabolism begins with the transport of Beta-D-fructofuranose through a fructose PTS permease, resulting in a Beta-D-fructofuranose 1-phosphate. This compound is phosphorylated by an ATP driven 1-phosphofructokinase resulting in a fructose 1,6-biphosphate. This compound can either react with a fructose bisphosphate aldolase class 1 resulting in D-glyceraldehyde 3-phosphate and a dihydroxyacetone phosphate or through a fructose biphosphate aldolase class 2 resulting in a D-glyceraldehyde 3-phosphate. This compound can then either react in a reversible triosephosphate isomerase resulting in a dihydroxyacetone phosphate or react with a phosphate through a NAD dependent Glyceraldehyde 3-phosphate dehydrogenase resulting in a glyceric acid 1,3-biphosphate. This compound is desphosphorylated by a phosphoglycerate kinase resulting in a 3-phosphoglyceric acid.This compound in turn can either react with a 2,3-bisphosphoglycerate-independent phosphoglycerate mutase or a 2,3-bisphosphoglycerate-independent phosphoglycerate mutase resulting in a 2-phospho-D-glyceric acid. This compound interacts with an enolase resulting in a phosphoenolpyruvic acid and water. Phosphoenolpyruvic acid can react either through a AMP driven phosphoenoylpyruvate synthase or a ADP driven pyruvate kinase protein complex resulting in a pyruvic acid.
Pyruvic acid reacts with CoA through a NAD driven pyruvate dehydrogenase complex resulting in a carbon dioxide and a Acetyl-CoA which gets incorporated into the TCA cycle pathway.
References
Fructose Metabolism References
Nelson K, Whittam TS, Selander RK: Nucleotide polymorphism and evolution in the glyceraldehyde-3-phosphate dehydrogenase gene (gapA) in natural populations of Salmonella and Escherichia coli. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6667-71. doi: 10.1073/pnas.88.15.6667.
Pubmed: 1862091
Branlant G, Branlant C: Nucleotide sequence of the Escherichia coli gap gene. Different evolutionary behavior of the NAD+-binding domain and of the catalytic domain of D-glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1985 Jul 1;150(1):61-6. doi: 10.1111/j.1432-1033.1985.tb08988.x.
Pubmed: 2990926
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Alefounder PR, Perham RN: Identification, molecular cloning and sequence analysis of a gene cluster encoding the class II fructose 1,6-bisphosphate aldolase, 3-phosphoglycerate kinase and a putative second glyceraldehyde 3-phosphate dehydrogenase of Escherichia coli. Mol Microbiol. 1989 Jun;3(6):723-32. doi: 10.1111/j.1365-2958.1989.tb00221.x.
Pubmed: 2546007
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Oshima T, Aiba H, Baba T, Fujita K, Hayashi K, Honjo A, Ikemoto K, Inada T, Itoh T, Kajihara M, Kanai K, Kashimoto K, Kimura S, Kitagawa M, Makino K, Masuda S, Miki T, Mizobuchi K, Mori H, Motomura K, Nakamura Y, Nashimoto H, Nishio Y, Saito N, Horiuchi T, et al.: A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map. DNA Res. 1996 Jun 30;3(3):137-55. doi: 10.1093/dnares/3.3.137.
Pubmed: 8905232
Spring TG, Wold F: The purification and characterization of Escherichia coli enolase. J Biol Chem. 1971 Nov 25;246(22):6797-802.
Pubmed: 4942326
Dannelly HK, Duclos B, Cozzone AJ, Reeves HC: Phosphorylation of Escherichia coli enolase. Biochimie. 1989 Sep-Oct;71(9-10):1095-100. doi: 10.1016/0300-9084(89)90116-8.
Pubmed: 2513001
Chandran V, Luisi BF: Recognition of enolase in the Escherichia coli RNA degradosome. J Mol Biol. 2006 Apr 21;358(1):8-15. doi: 10.1016/j.jmb.2006.02.012. Epub 2006 Feb 21.
Pubmed: 16516921
Ohara O, Dorit RL, Gilbert W: Direct genomic sequencing of bacterial DNA: the pyruvate kinase I gene of Escherichia coli. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6883-7. doi: 10.1073/pnas.86.18.6883.
Pubmed: 2674937
Hensel M, Shea JE, Baumler AJ, Gleeson C, Blattner F, Holden DW: Analysis of the boundaries of Salmonella pathogenicity island 2 and the corresponding chromosomal region of Escherichia coli K-12. J Bacteriol. 1997 Feb;179(4):1105-11. doi: 10.1128/jb.179.4.1105-1111.1997.
Pubmed: 9023191
Itoh T, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Kasai H, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Seki Y, Horiuchi T, et al.: A 460-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 40.1-50.0 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):379-92. doi: 10.1093/dnares/3.6.379.
Pubmed: 9097040
Orchard LM, Kornberg HL: Sequence similarities between the gene specifying 1-phosphofructokinase (fruK), genes specifying other kinases in Escherichia coli K12, and lacC of Staphylococcus aureus. Proc Biol Sci. 1990 Nov 22;242(1304):87-90. doi: 10.1098/rspb.1990.0108.
Pubmed: 1981619
Thomson GJ, Howlett GJ, Ashcroft AE, Berry A: The dhnA gene of Escherichia coli encodes a class I fructose bisphosphate aldolase. Biochem J. 1998 Apr 15;331 ( Pt 2):437-45. doi: 10.1042/bj3310437.
Pubmed: 9531482
Alefounder PR, Baldwin SA, Perham RN, Short NJ: Cloning, sequence analysis and over-expression of the gene for the class II fructose 1,6-bisphosphate aldolase of Escherichia coli. Biochem J. 1989 Jan 15;257(2):529-34. doi: 10.1042/bj2570529.
Pubmed: 2649077
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000930
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings