Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Phenylalanine Metabolism
Escherichia coli K-12
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2025-01-02
Last Updated: 2025-01-02
The pathways of the metabolism of phenylalaline begins with the conversion of chorismate to prephenate through a P-protein (chorismate mutase:pheA). Prephenate then interacts with a hydrogen ion through the same previous enzyme resulting in a release of carbon dioxide, water and a phenolpyruvic acid. Three enzymes those enconde by tyrB, aspC and ilvE are involved in catalyzing the third step of these pathways, all three can contribute to the synthesis of phenylalanine: only tyrB and aspC contribute to biosynthesis of tyrosine.
Phenolpyruvic acid can also be obtained from a reversivle reaction with ammonia, a reduced acceptor and a D-amino acid dehydrogenase, resulting in a water, an acceptor and a D-phenylalanine, which can be then transported into the periplasmic space by aromatic amino acid exporter.
L-phenylalanine also interacts in two reversible reactions, one involved with oxygen through a catalase peroxidase resulting in a carbon dioxide and 2-phenylacetamide. The other reaction involved an interaction with oxygen through a phenylalanine aminotransferase resulting in a oxoglutaric acid and phenylpyruvic acid.
L-phenylalanine can be imported into the cytoplasm through an aromatic amino acid:H+ symporter AroP.
The compound can also be imported into the periplasmic space through a transporter: L-amino acid efflux transporter.
References
Phenylalanine Metabolism References
Gavini N, Davidson BE: pheAo mutants of Escherichia coli have a defective pheA attenuator. J Biol Chem. 1990 Dec 15;265(35):21532-5.
Pubmed: 2254312
Hudson GS, Davidson BE: Nucleotide sequence and transcription of the phenylalanine and tyrosine operons of Escherichia coli K12. J Mol Biol. 1984 Dec 25;180(4):1023-51. doi: 10.1016/0022-2836(84)90269-9.
Pubmed: 6396419
Yamamoto Y, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kimura S, Kitagawa M, Makino K, Miki T, Mitsuhashi N, Mizobuchi K, Mori H, Nakade S, Nakamura Y, Nashimoto H, Oshima T, Oyama S, Saito N, Sampei G, Satoh Y, Sivasundaram S, Tagami H, Horiuchi T, et al.: Construction of a contiguous 874-kb sequence of the Escherichia coli -K12 genome corresponding to 50.0-68.8 min on the linkage map and analysis of its sequence features. DNA Res. 1997 Apr 28;4(2):91-113. doi: 10.1093/dnares/4.2.91.
Pubmed: 9205837
Fotheringham IG, Dacey SA, Taylor PP, Smith TJ, Hunter MG, Finlay ME, Primrose SB, Parker DM, Edwards RM: The cloning and sequence analysis of the aspC and tyrB genes from Escherichia coli K12. Comparison of the primary structures of the aspartate aminotransferase and aromatic aminotransferase of E. coli with those of the pig aspartate aminotransferase isoenzymes. Biochem J. 1986 Mar 15;234(3):593-604. doi: 10.1042/bj2340593.
Pubmed: 3521591
Kuramitsu S, Inoue K, Ogawa T, Ogawa H, Kagamiyama H: Aromatic amino acid aminotransferase of Escherichia coli: nucleotide sequence of the tyrB gene. Biochem Biophys Res Commun. 1985 Nov 27;133(1):134-9. doi: 10.1016/0006-291x(85)91851-0.
Pubmed: 3907634
Yang J, Pittard J: Molecular analysis of the regulatory region of the Escherichia coli K-12 tyrB gene. J Bacteriol. 1987 Oct;169(10):4710-5. doi: 10.1128/jb.169.10.4710-4715.1987.
Pubmed: 3308851
Kuramitsu S, Okuno S, Ogawa T, Ogawa H, Kagamiyama H: Aspartate aminotransferase of Escherichia coli: nucleotide sequence of the aspC gene. J Biochem. 1985 Apr;97(4):1259-62. doi: 10.1093/oxfordjournals.jbchem.a135173.
Pubmed: 3897210
Kondo K, Wakabayashi S, Yagi T, Kagamiyama H: The complete amino acid sequence of aspartate aminotransferase from Escherichia coli: sequence comparison with pig isoenzymes. Biochem Biophys Res Commun. 1984 Jul 18;122(1):62-7. doi: 10.1016/0006-291x(84)90439-x.
Pubmed: 6378205
Kuramitsu S, Ogawa T, Ogawa H, Kagamiyama H: Branched-chain amino acid aminotransferase of Escherichia coli: nucleotide sequence of the ilvE gene and the deduced amino acid sequence. J Biochem. 1985 Apr;97(4):993-9. doi: 10.1093/oxfordjournals.jbchem.a135176.
Pubmed: 3897211
Lawther RP, Nichols B, Zurawski G, Hatfield GW: The nucleotide sequence preceding and including the beginning of the ilvE gene of the ilvGEDA operon of Escherichia coli K12. Nucleic Acids Res. 1979 Dec 20;7(8):2289-301. doi: 10.1093/nar/7.8.2289.
Pubmed: 392469
Lawther RP, Wek RC, Lopes JM, Pereira R, Taillon BE, Hatfield GW: The complete nucleotide sequence of the ilvGMEDA operon of Escherichia coli K-12. Nucleic Acids Res. 1987 Mar 11;15(5):2137-55. doi: 10.1093/nar/15.5.2137.
Pubmed: 3550695
Darwin A, Hussain H, Griffiths L, Grove J, Sambongi Y, Busby S, Cole J: Regulation and sequence of the structural gene for cytochrome c552 from Escherichia coli: not a hexahaem but a 50 kDa tetrahaem nitrite reductase. Mol Microbiol. 1993 Sep;9(6):1255-65. doi: 10.1111/j.1365-2958.1993.tb01255.x.
Pubmed: 7934939
Blattner FR, Burland V, Plunkett G 3rd, Sofia HJ, Daniels DL: Analysis of the Escherichia coli genome. IV. DNA sequence of the region from 89.2 to 92.8 minutes. Nucleic Acids Res. 1993 Nov 25;21(23):5408-17. doi: 10.1093/nar/21.23.5408.
Pubmed: 8265357
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Lobocka M, Hennig J, Wild J, Klopotowski T: Organization and expression of the Escherichia coli K-12 dad operon encoding the smaller subunit of D-amino acid dehydrogenase and the catabolic alanine racemase. J Bacteriol. 1994 Mar;176(5):1500-10. doi: 10.1128/jb.176.5.1500-1510.1994.
Pubmed: 7906689
Oshima T, Aiba H, Baba T, Fujita K, Hayashi K, Honjo A, Ikemoto K, Inada T, Itoh T, Kajihara M, Kanai K, Kashimoto K, Kimura S, Kitagawa M, Makino K, Masuda S, Miki T, Mizobuchi K, Mori H, Motomura K, Nakamura Y, Nashimoto H, Nishio Y, Saito N, Horiuchi T, et al.: A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map. DNA Res. 1996 Jun 30;3(3):137-55. doi: 10.1093/dnares/3.3.137.
Pubmed: 8905232
Honore N, Cole ST: Nucleotide sequence of the aroP gene encoding the general aromatic amino acid transport protein of Escherichia coli K-12: homology with yeast transport proteins. Nucleic Acids Res. 1990 Feb 11;18(3):653. doi: 10.1093/nar/18.3.653.
Pubmed: 2408019
Cosgriff AJ, Pittard AJ: A topological model for the general aromatic amino acid permease, AroP, of Escherichia coli. J Bacteriol. 1997 May;179(10):3317-23. doi: 10.1128/jb.179.10.3317-3323.1997.
Pubmed: 9150230
Fujita N, Mori H, Yura T, Ishihama A: Systematic sequencing of the Escherichia coli genome: analysis of the 2.4-4.1 min (110,917-193,643 bp) region. Nucleic Acids Res. 1994 May 11;22(9):1637-9. doi: 10.1093/nar/22.9.1637.
Pubmed: 8202364
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000938
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings