Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Fatty Acid Biosynthesis
Escherichia coli 042
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2025-01-08
Last Updated: 2025-01-08
The fatty acid biosynthesis starts from acetyl-CoA reacting either with a holo-[acp] through a 3-oxoacyl-[acp] synthase 3 resulting in an acetyl-[acp] or react with hydrogen carbonate through an ATP driven acetyl-CoA carboxylase resulting in a malonyl-CoA.
Malonyl-CoA reacts with a holo-acp] through a malonyl-CoA-ACP transacylase resulting in a malonyl-[acp]. This compound can react with a KASI protein resulting in an acetyl-[acp]. A malonyl-[acp] can also react with an acetyl-[acp] through KASI and KASII or with acetyl-CoA through a beta-ketoacyl-ACP synthase to produce an acetoacetyl-[acp]. An acetoacetyl-[acp] is also known as a 3-oxoacyl-[acp].
A 3-oxoacyl-[acp] is reduced through a NDPH mediated 3-oxoacyl-[acp] reductase resulting in a (3R)-3-hydroxyacyl-[acp] (R3 hydroxydecanoyl-[acp]) which can either join the fatty acid metabolism, be dehydrated by an 3R-hydroxymyristoyl-[acp] dehydratase to produce a trans-2-enoyl-[acp] or be dehydrated by a hydroxydecanoyl-[acp] to produce a trans-delta2 decenoyl-[acp].
Trans-2-enoyl-[acp] is reduced by a NADH driven enoyl-[acp] reductase resulting in a 2,3,4-saturated fatty acyl-[acp]. This product then reacts with malonyl-[acp] through KASI and KASII resulting in a holo-acyl carrier protein and a 3- oxoacyl-[acp].
Trans-delta2 decenoyl-[acp] reacts with a 3-hydroxydecanoyl-[acp] dehydrase producing a cis-delta 3-decenoyl-ACP. This product then reacts with KASI to produce a 3-oxo-cis-delta5-dodecenoyl-[acp], which in turn is reduced by a NADPH driven 3-oxoacyl-[acp] resulting in a 3R-hydroxy cis delta5-dodecenoyl-acp. This product is dehydrated by a (3R)-hydroxymyristoyl-[acp] dehydratase resulting in a trans-delta 3- cis-delta 5-dodecenoyl-[acp] which in turn is reduced by a NADH driven enoyl-[acp] reductase resulting in a cis-delta5-dodecenoyl-acp which becomes a metabolite of fatty acid metabolism
References
Fatty Acid Biosynthesis References
Li SJ, Cronan JE Jr: The genes encoding the two carboxyltransferase subunits of Escherichia coli acetyl-CoA carboxylase. J Biol Chem. 1992 Aug 25;267(24):16841-7.
Pubmed: 1355089
Yamamoto Y, Miwa Y, Miyoshi K, Furuyama J, Ohmori H: The Escherichia coli ldcC gene encodes another lysine decarboxylase, probably a constitutive enzyme. Genes Genet Syst. 1997 Jun;72(3):167-72.
Pubmed: 9339543
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Bognar AL, Osborne C, Shane B: Primary structure of the Escherichia coli folC gene and its folylpolyglutamate synthetase-dihydrofolate synthetase product and regulation of expression by an upstream gene. J Biol Chem. 1987 Sep 5;262(25):12337-43.
Pubmed: 3040739
Nonet ML, Marvel CC, Tolan DR: The hisT-purF region of the Escherichia coli K-12 chromosome. Identification of additional genes of the hisT and purF operons. J Biol Chem. 1987 Sep 5;262(25):12209-17.
Pubmed: 3040734
Yamamoto Y, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kimura S, Kitagawa M, Makino K, Miki T, Mitsuhashi N, Mizobuchi K, Mori H, Nakade S, Nakamura Y, Nashimoto H, Oshima T, Oyama S, Saito N, Sampei G, Satoh Y, Sivasundaram S, Tagami H, Horiuchi T, et al.: Construction of a contiguous 874-kb sequence of the Escherichia coli -K12 genome corresponding to 50.0-68.8 min on the linkage map and analysis of its sequence features. DNA Res. 1997 Apr 28;4(2):91-113. doi: 10.1093/dnares/4.2.91.
Pubmed: 9205837
Kondo H, Shiratsuchi K, Yoshimoto T, Masuda T, Kitazono A, Tsuru D, Anai M, Sekiguchi M, Tanabe T: Acetyl-CoA carboxylase from Escherichia coli: gene organization and nucleotide sequence of the biotin carboxylase subunit. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9730-3. doi: 10.1073/pnas.88.21.9730.
Pubmed: 1682920
Li SJ, Cronan JE Jr: The gene encoding the biotin carboxylase subunit of Escherichia coli acetyl-CoA carboxylase. J Biol Chem. 1992 Jan 15;267(2):855-63.
Pubmed: 1370469
Muramatsu S, Mizuno T: Nucleotide sequence of the fabE gene and flanking regions containing a bent DNA sequence of Escherichia coli. Nucleic Acids Res. 1989 May 25;17(10):3982. doi: 10.1093/nar/17.10.3982.
Pubmed: 2660106
Alix JH: A rapid procedure for cloning genes from lambda libraries by complementation of E. coli defective mutants: application to the fabE region of the E. coli chromosome. DNA. 1989 Dec;8(10):779-89. doi: 10.1089/dna.1989.8.779.
Pubmed: 2575489
Magnuson K, Oh W, Larson TJ, Cronan JE Jr: Cloning and nucleotide sequence of the fabD gene encoding malonyl coenzyme A-acyl carrier protein transacylase of Escherichia coli. FEBS Lett. 1992 Mar 16;299(3):262-6. doi: 10.1016/0014-5793(92)80128-4.
Pubmed: 1339356
Verwoert II, Verbree EC, van der Linden KH, Nijkamp HJ, Stuitje AR: Cloning, nucleotide sequence, and expression of the Escherichia coli fabD gene, encoding malonyl coenzyme A-acyl carrier protein transacylase. J Bacteriol. 1992 May;174(9):2851-7. doi: 10.1128/jb.174.9.2851-2857.1992.
Pubmed: 1314802
Bouquin N, Tempete M, Holland IB, Seror SJ: Resistance to trifluoroperazine, a calmodulin inhibitor, maps to the fabD locus in Escherichia coli. Mol Gen Genet. 1995 Mar 10;246(5):628-37. doi: 10.1007/bf00298970.
Pubmed: 7700236
Kauppinen S, Siggaard-Andersen M, von Wettstein-Knowles P: beta-Ketoacyl-ACP synthase I of Escherichia coli: nucleotide sequence of the fabB gene and identification of the cerulenin binding residue. Carlsberg Res Commun. 1988;53(6):357-70.
Pubmed: 3076376
Magnuson K, Carey MR, Cronan JE Jr: The putative fabJ gene of Escherichia coli fatty acid synthesis is the fabF gene. J Bacteriol. 1995 Jun;177(12):3593-5. doi: 10.1128/jb.177.12.3593-3595.1995.
Pubmed: 7768872
Jackowski S, Rock CO: Altered molecular form of acyl carrier protein associated with beta-ketoacyl-acyl carrier protein synthase II (fabF) mutants. J Bacteriol. 1987 Apr;169(4):1469-73. doi: 10.1128/jb.169.4.1469-1473.1987.
Pubmed: 3549687
Edwards P, Nelsen JS, Metz JG, Dehesh K: Cloning of the fabF gene in an expression vector and in vitro characterization of recombinant fabF and fabB encoded enzymes from Escherichia coli. FEBS Lett. 1997 Jan 27;402(1):62-6. doi: 10.1016/s0014-5793(96)01437-8.
Pubmed: 9013860
Coleman J, Raetz CR: First committed step of lipid A biosynthesis in Escherichia coli: sequence of the lpxA gene. J Bacteriol. 1988 Mar;170(3):1268-74. doi: 10.1128/jb.170.3.1268-1274.1988.
Pubmed: 3277952
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Heath RJ, Rock CO: Enoyl-acyl carrier protein reductase (fabI) plays a determinant role in completing cycles of fatty acid elongation in Escherichia coli. J Biol Chem. 1995 Nov 3;270(44):26538-42. doi: 10.1074/jbc.270.44.26538.
Pubmed: 7592873
Bergler H, Hogenauer G, Turnowsky F: Sequences of the envM gene and of two mutated alleles in Escherichia coli. J Gen Microbiol. 1992 Oct;138(10):2093-100. doi: 10.1099/00221287-138-10-2093.
Pubmed: 1364817
Kater MM, Koningstein GM, Nijkamp HJ, Stuitje AR: The use of a hybrid genetic system to study the functional relationship between prokaryotic and plant multi-enzyme fatty acid synthetase complexes. Plant Mol Biol. 1994 Aug;25(5):771-90. doi: 10.1007/bf00028873.
Pubmed: 8075395
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000919
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings