Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Porphyrin Metabolism
Escherichia coli O157:H7
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2025-01-14
Last Updated: 2025-01-14
The metabolism of porphyrin begins with with glutamic acid being processed by an ATP-driven glutamyl-tRNA synthetase by interacting with hydrogen ion and tRNA(Glu), resulting in amo, pyrophosphate and L-glutamyl-tRNA(Glu) Glutamic acid. Glutamic acid can be obtained as a result of L-glutamate metabolism pathway, glutamate / aspartate : H+ symporter GltP, glutamate:sodium symporter or a glutamate / aspartate ABC transporter .
L-glutamyl-tRNA(Glu) Glutamic acid interacts with a NADPH glutamyl-tRNA reductase resulting in a NADP, a tRNA(Glu) and a (S)-4-amino-5-oxopentanoate.
This compound interacts with a glutamate-1-semialdehyde aminotransferase resulting a 5-aminolevulinic acid. This compound interacts with a porphobilinogen synthase resulting in a hydrogen ion, water and porphobilinogen. The latter compound interacts with water resulting in hydroxymethylbilane synthase resulting in ammonium, and hydroxymethylbilane.
Hydroxymethylbilane can either be dehydrated to produce uroporphyrinogen I or interact with a uroporphyrinogen III synthase resulting in a water molecule and a uroporphyrinogen III.
Uroporphyrinogen I interacts with hydrogen ion through a uroporphyrinogen decarboxylase resulting in a carbon dioxide and a coproporphyrinogen I
Uroporphyrinogen III can be metabolized into precorrin by interacting with a S-adenosylmethionine through a siroheme synthase resulting in hydrogen ion, an s-adenosylhomocysteine and a precorrin-1. On the other hand, Uroporphyrinogen III interacts with hydrogen ion through a uroporphyrinogen decarboxylase resulting in a carbon dioxide and a Coproporphyrinogen III.
Precorrin-1 reacts with a S-adenosylmethionine through a siroheme synthase resulting in a S-adenosylhomocysteine and a Precorrin-2. The latter compound is processed by a NAD dependent uroporphyrin III C-methyltransferase [multifunctional] resulting in a NADH and a sirohydrochlorin. This compound then interacts with Fe 2+
uroporphyrin III C-methyltransferase [multifunctional] resulting in a hydrogen ion and a siroheme. The siroheme is then processed in sulfur metabolism pathway.
Uroporphyrinogen III can be processed in anaerobic or aerobic condition.
Anaerobic:
Uroporphyrinogen III interacts with an oxygen molecule, a hydrogen ion through a coproporphyrinogen III oxidase resulting in water, carbon dioxide and protoporphyrinogen IX. The latter compound then interacts with an 3 oxygen molecule through a protoporphyrinogen oxidase resulting in 3 hydrogen peroxide and a Protoporphyrin IX
Aerobic:
Uroporphyrinogen III reacts with S-adenosylmethionine through a coproporphyrinogen III dehydrogenase resulting in carbon dioxide, 5-deoxyadenosine, L-methionine and protoporphyrinogen IX. The latter compound interacts with a meanquinone through a protoporphyrinogen oxidase resulting in protoporphyrin IX.
The protoporphyrin IX interacts with Fe 2+ through a ferrochelatase resulting in a hydrogen ion and a ferroheme b. The ferroheme b can either be incorporated into the oxidative phosphorylation as a cofactor of the enzymes involved in that pathway or it can interact with hydrogen peroxide through a catalase HPII resulting in a heme D. Heme D can then be incorporated into the oxidative phosphyrlation pathway as a cofactor of the enzymes involved in that pathway. Ferroheme b can also interact with water and a farnesyl pyrophosphate through a heme O synthase resulting in a release of pyrophosphate and heme O. Heme O is then incorporated into the Oxidative phosphorylation pathway.
References
Porphyrin Metabolism References
Breton R, Sanfacon H, Papayannopoulos I, Biemann K, Lapointe J: Glutamyl-tRNA synthetase of Escherichia coli. Isolation and primary structure of the gltX gene and homology with other aminoacyl-tRNA synthetases. J Biol Chem. 1986 Aug 15;261(23):10610-7.
Pubmed: 3015933
Brun YV, Sanfacon H, Breton R, Lapointe J: Closely spaced and divergent promoters for an aminoacyl-tRNA synthetase gene and a tRNA operon in Escherichia coli. Transcriptional and post-transcriptional regulation of gltX, valU and alaW. J Mol Biol. 1990 Aug 20;214(4):845-64. doi: 10.1016/0022-2836(90)90340-R.
Pubmed: 2201777
Yamamoto Y, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kimura S, Kitagawa M, Makino K, Miki T, Mitsuhashi N, Mizobuchi K, Mori H, Nakade S, Nakamura Y, Nashimoto H, Oshima T, Oyama S, Saito N, Sampei G, Satoh Y, Sivasundaram S, Tagami H, Horiuchi T, et al.: Construction of a contiguous 874-kb sequence of the Escherichia coli -K12 genome corresponding to 50.0-68.8 min on the linkage map and analysis of its sequence features. DNA Res. 1997 Apr 28;4(2):91-113. doi: 10.1093/dnares/4.2.91.
Pubmed: 9205837
Verkamp E, Chelm BK: Isolation, nucleotide sequence, and preliminary characterization of the Escherichia coli K-12 hemA gene. J Bacteriol. 1989 Sep;171(9):4728-35. doi: 10.1128/jb.171.9.4728-4735.1989.
Pubmed: 2548996
Drolet M, Peloquin L, Echelard Y, Cousineau L, Sasarman A: Isolation and nucleotide sequence of the hemA gene of Escherichia coli K12. Mol Gen Genet. 1989 Apr;216(2-3):347-52. doi: 10.1007/bf00334375.
Pubmed: 2664455
Verkamp E, Jahn M, Jahn D, Kumar AM, Soll D: Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803. Gene structure and expression. J Biol Chem. 1992 Apr 25;267(12):8275-80.
Pubmed: 1569081
Li JM, Russell CS, Cosloy SD: The structure of the Escherichia coli hemB gene. Gene. 1989 Jan 30;75(1):177-84. doi: 10.1016/0378-1119(89)90394-6.
Pubmed: 2656410
Echelard Y, Dymetryszyn J, Drolet M, Sasarman A: Nucleotide sequence of the hemB gene of Escherichia coli K12. Mol Gen Genet. 1988 Nov;214(3):503-8. doi: 10.1007/bf00330487.
Pubmed: 2464127
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Thomas SD, Jordan PM: Nucleotide sequence of the hemC locus encoding porphobilinogen deaminase of Escherichia coli K12. Nucleic Acids Res. 1986 Aug 11;14(15):6215-26. doi: 10.1093/nar/14.15.6215.
Pubmed: 3529035
Alefounder PR, Abell C, Battersby AR: The sequence of hemC, hemD and two additional E. coli genes. Nucleic Acids Res. 1988 Oct 25;16(20):9871. doi: 10.1093/nar/16.20.9871.
Pubmed: 3054815
Daniels DL, Plunkett G 3rd, Burland V, Blattner FR: Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. Science. 1992 Aug 7;257(5071):771-8. doi: 10.1126/science.1379743.
Pubmed: 1379743
Jordan PM, Mgbeje BI, Alwan AF, Thomas SD: Nucleotide sequence of hemD, the second gene in the hem operon of Escherichia coli K-12. Nucleic Acids Res. 1987 Dec 23;15(24):10583. doi: 10.1093/nar/15.24.10583.
Pubmed: 3320969
Jordan PM, Mgbeje BI, Thomas SD, Alwan AF: Nucleotide sequence for the hemD gene of Escherichia coli encoding uroporphyrinogen III synthase and initial evidence for a hem operon. Biochem J. 1988 Jan 15;249(2):613-6. doi: 10.1042/bj2490613.
Pubmed: 3277628
Nishimura K, Nakayashiki T, Inokuchi H: Cloning and sequencing of the hemE gene encoding uroporphyrinogen III decarboxylase (UPD) from Escherichia coli K-12. Gene. 1993 Oct 29;133(1):109-13. doi: 10.1016/0378-1119(93)90233-s.
Pubmed: 8224882
Blattner FR, Burland V, Plunkett G 3rd, Sofia HJ, Daniels DL: Analysis of the Escherichia coli genome. IV. DNA sequence of the region from 89.2 to 92.8 minutes. Nucleic Acids Res. 1993 Nov 25;21(23):5408-17. doi: 10.1093/nar/21.23.5408.
Pubmed: 8265357
Troup B, Jahn M, Hungerer C, Jahn D: Isolation of the hemF operon containing the gene for the Escherichia coli aerobic coproporphyrinogen III oxidase by in vivo complementation of a yeast HEM13 mutant. J Bacteriol. 1994 Feb;176(3):673-80. doi: 10.1128/jb.176.3.673-680.1994.
Pubmed: 8300522
Troup B, Hungerer C, Jahn D: Cloning and characterization of the Escherichia coli hemN gene encoding the oxygen-independent coproporphyrinogen III oxidase. J Bacteriol. 1995 Jun;177(11):3326-31. doi: 10.1128/jb.177.11.3326-3331.1995.
Pubmed: 7768836
Layer G, Verfurth K, Mahlitz E, Jahn D: Oxygen-independent coproporphyrinogen-III oxidase HemN from Escherichia coli. J Biol Chem. 2002 Sep 13;277(37):34136-42. doi: 10.1074/jbc.M205247200. Epub 2002 Jul 11.
Pubmed: 12114526
Plunkett G 3rd, Burland V, Daniels DL, Blattner FR: Analysis of the Escherichia coli genome. III. DNA sequence of the region from 87.2 to 89.2 minutes. Nucleic Acids Res. 1993 Jul 25;21(15):3391-8. doi: 10.1093/nar/21.15.3391.
Pubmed: 8346018
Saiki K, Mogi T, Ogura K, Anraku Y: In vitro heme O synthesis by the cyoE gene product from Escherichia coli. J Biol Chem. 1993 Dec 15;268(35):26041-4.
Pubmed: 8253713
Chepuri V, Lemieux L, Au DC, Gennis RB: The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinol oxidase of Escherichia coli and the aa3-type family of cytochrome c oxidases. J Biol Chem. 1990 Jul 5;265(19):11185-92.
Pubmed: 2162835
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000953
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings