Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Secondary Metabolites: Glyoxylate Cycle
Escherichia coli SE15
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2025-01-24
Last Updated: 2025-01-24
The glyoxylate cycle starts with the interaction of Acetyl-Coa with a water molecule and Oxalacetic acid interact through a Citrate synthase resulting in a release of a coenzyme a and citric acid. The citric acid gets dehydrated through a citrate hydro-lyase resulting in the release of a water molecule and cis-Aconitic acid. The cis-Aconitic acid is then hydrated in an reversible reaction through an aconitate hydratase resulting in an Isocitric acid. The isocitric acid then interacts in a reversible reaction through isocitrate lyase resulting in the release of a succinic acid and a glyoxylic acid. The glyoxylic acid then reacts in a reversible reaction with an acetyl-coa, and a water molecule in a reversible reaction, resulting in a release of a coenzyme A, a hydrogen ion and an L-malic acid. The L-malic acid interacts in a reversible reaction through a NAD driven malate dehydrogenase resulting in the release of NADH, a hydrogen ion and an Oxalacetic acid.
References
Secondary Metabolites: Glyoxylate Cycle References
Cunningham L, Gruer MJ, Guest JR: Transcriptional regulation of the aconitase genes (acnA and acnB) of Escherichia coli. Microbiology. 1997 Dec;143 ( Pt 12):3795-805. doi: 10.1099/00221287-143-12-3795.
Pubmed: 9421904
Prodromou C, Artymiuk PJ, Guest JR: The aconitase of Escherichia coli. Nucleotide sequence of the aconitase gene and amino acid sequence similarity with mitochondrial aconitases, the iron-responsive-element-binding protein and isopropylmalate isomerases. Eur J Biochem. 1992 Mar 1;204(2):599-609. doi: 10.1111/j.1432-1033.1992.tb16673.x.
Pubmed: 1541275
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Fujita N, Mori H, Yura T, Ishihama A: Systematic sequencing of the Escherichia coli genome: analysis of the 2.4-4.1 min (110,917-193,643 bp) region. Nucleic Acids Res. 1994 May 11;22(9):1637-9. doi: 10.1093/nar/22.9.1637.
Pubmed: 8202364
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Hull EP, Spencer ME, Wood D, Guest JR: Nucleotide sequence of the promoter region of the citrate synthase gene (gltA) of Escherichia coli. FEBS Lett. 1983 Jun 13;156(2):366-70. doi: 10.1016/0014-5793(83)80530-4.
Pubmed: 6343122
Oshima T, Aiba H, Baba T, Fujita K, Hayashi K, Honjo A, Ikemoto K, Inada T, Itoh T, Kajihara M, Kanai K, Kashimoto K, Kimura S, Kitagawa M, Makino K, Masuda S, Miki T, Mizobuchi K, Mori H, Motomura K, Nakamura Y, Nashimoto H, Nishio Y, Saito N, Horiuchi T, et al.: A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map. DNA Res. 1996 Jun 30;3(3):137-55. doi: 10.1093/dnares/3.3.137.
Pubmed: 8905232
Fernley RT, Lentz SR, Bradshaw RA: Malate dehydrogenase: isolation from E. coli and comparison with the eukaryotic mitochondrial and cytoplasmic forms. Biosci Rep. 1981 Jun;1(6):497-507. doi: 10.1007/bf01121583.
Pubmed: 7028159
Boyd EF, Nelson K, Wang FS, Whittam TS, Selander RK: Molecular genetic basis of allelic polymorphism in malate dehydrogenase (mdh) in natural populations of Escherichia coli and Salmonella enterica. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1280-4. doi: 10.1073/pnas.91.4.1280.
Pubmed: 8108402
Pupo GM, Karaolis DK, Lan R, Reeves PR: Evolutionary relationships among pathogenic and nonpathogenic Escherichia coli strains inferred from multilocus enzyme electrophoresis and mdh sequence studies. Infect Immun. 1997 Jul;65(7):2685-92.
Pubmed: 9199437
Rieul C, Bleicher F, Duclos B, Cortay JC, Cozzone AJ: Nucleotide sequence of the aceA gene coding for isocitrate lyase in Escherichia coli. Nucleic Acids Res. 1988 Jun 24;16(12):5689. doi: 10.1093/nar/16.12.5689.
Pubmed: 3290857
Matsuoka M, McFadden BA: Isolation, hyperexpression, and sequencing of the aceA gene encoding isocitrate lyase in Escherichia coli. J Bacteriol. 1988 Oct;170(10):4528-36. doi: 10.1128/jb.170.10.4528-4536.1988.
Pubmed: 3049537
Byrne C, Stokes HW, Ward KA: Nucleotide sequence of the aceB gene encoding malate synthase A in Escherichia coli. Nucleic Acids Res. 1988 Oct 11;16(19):9342. doi: 10.1093/nar/16.19.9342.
Pubmed: 3050899
Molina I, Pellicer MT, Badia J, Aguilar J, Baldoma L: Molecular characterization of Escherichia coli malate synthase G. Differentiation with the malate synthase A isoenzyme. Eur J Biochem. 1994 Sep 1;224(2):541-8. doi: 10.1111/j.1432-1033.1994.00541.x.
Pubmed: 7925370
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000983
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings