Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Biofilm formation: epsA, epsB, epsC, epsD, epsE, epsF, epsG, epsH, epsI, epsJ, epsK, epsL, epsM, epsN, epsO
Bacillus subtilis (strain 168)
Category:
Metabolite Pathway
Sub-Category:
Signaling
Created: 2025-02-25
Last Updated: 2025-09-13
The regulation of the epsABCDEFGHIJKLMNO operon. The operon is inhibited by sinR (HTH-type transcriptional regulator) and activated by sinI. SinR binds to the promoter inhibiting crp from binding and transcribing the operon. SinI is regulated by spo0A (Stage 0 sporulation protein A). When spo0A is present in high concentrations, sinI is expressed. Then sinI binds with sinR to form a sinI-sinR heterodimer. This caused conformational changes to sinR preventing it from binding the to promoter. Therefore, activating the expression of the operon. There are 15 products from this operon: epsA (Polysaccharide chain length determinant N-terminal domain-containing protein), epsB (non-specific protein-tyrosine kinase), epsC (Probable polysaccharide biosynthesis protein), epsD (Putative glycosyltransferase), epsE (Putative glycosyltransferase), epsF (Putative glycosyltransferase), epsG (Transmembrane protein), epsH (Putative glycosyltransferase), epsI (Putative pyruvyl transferase), epsJ (Uncharacterized glycosyltransferase), epsK (Uncharacterized membrane protein EpsK), epsL (Uncharacterized sugar transferase), epsM (UDP-N-acetylbacillosamine N-acetyltransferase), epsN (Putative pyridoxal phosphate-dependent aminotransferase), epsO (Putative pyruvyl transferase). EpsA, epsC, epsG, epsK, epsL are membrane proteins involved in biofilm formation. EpsD, epsE, epsF, epsH, epsI, epsJ, epsN and epsO are types of transferases used in the EPS production. EpsB is an enzyme used to phosphorylate tyrosine residue proteins. EpsM is an enzyme used to add an acetyl group to UDP-N-acetylbacillosamine to make UDP-N,N'-diacetylbacillosamine.
References
Biofilm formation: epsA, epsB, epsC, epsD, epsE, epsF, epsG, epsH, epsI, epsJ, epsK, epsL, epsM, epsN, epsO References
Kanmani P, Albarracin L, Kobayashi H, Hebert EM, Saavedra L, Komatsu R, Gatica B, Miyazaki A, Ikeda-Ohtsubo W, Suda Y, Aso H, Egusa S, Mishima T, Salas-Burgos A, Takahashi H, Villena J, Kitazawa H: Genomic Characterization of Lactobacillus delbrueckii TUA4408L and Evaluation of the Antiviral Activities of its Extracellular Polysaccharides in Porcine Intestinal Epithelial Cells. Front Immunol. 2018 Sep 24;9:2178. doi: 10.3389/fimmu.2018.02178. eCollection 2018.
Pubmed: 30319634
Wang J, Goh KM, Salem DR, Sani RK: Genome analysis of a thermophilic exopolysaccharide-producing bacterium - Geobacillus sp. WSUCF1. Sci Rep. 2019 Feb 7;9(1):1608. doi: 10.1038/s41598-018-36983-z.
Pubmed: 30733471
Li S, Duan G, Xi Y, Chu Y, Li F, Ho SH: Insights into the role of extracellular polymeric substances (EPS) in the spread of antibiotic resistance genes. Environ Pollut. 2024 Feb 15;343:123285. doi: 10.1016/j.envpol.2023.123285. Epub 2023 Dec 31.
Pubmed: 38169168
Colledge VL, Fogg MJ, Levdikov VM, Leech A, Dodson EJ, Wilkinson AJ: Structure and organisation of SinR, the master regulator of biofilm formation in Bacillus subtilis. J Mol Biol. 2011 Aug 19;411(3):597-613. doi: 10.1016/j.jmb.2011.06.004. Epub 2011 Jun 25.
Pubmed: 21708175
Welman AD, Maddox IS: Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol. 2003 Jun;21(6):269-74. doi: 10.1016/S0167-7799(03)00107-0.
Pubmed: 12788547
Caro-Astorga J, Alvarez-Mena A, Hierrezuelo J, Guadix JA, Heredia-Ponce Z, Arboleda-Estudillo Y, Gonzalez-Munoz E, de Vicente A, Romero D: Two genomic regions encoding exopolysaccharide production systems have complementary functions in B. cereus multicellularity and host interaction. Sci Rep. 2020 Jan 22;10(1):1000. doi: 10.1038/s41598-020-57970-3.
Pubmed: 31969664
Cossart P, Gicquel-Sanzey B: Cloning and sequence of the crp gene of Escherichia coli K 12. Nucleic Acids Res. 1982 Feb 25;10(4):1363-78. doi: 10.1093/nar/10.4.1363.
Pubmed: 6280141
Aiba H, Fujimoto S, Ozaki N: Molecular cloning and nucleotide sequencing of the gene for E. coli cAMP receptor protein. Nucleic Acids Res. 1982 Feb 25;10(4):1345-61. doi: 10.1093/nar/10.4.1345.
Pubmed: 6280140
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings