
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Glycerol Metabolism IV (Glycerophosphoglycerol)
Escherichia coli O157:H7
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2025-03-08
Last Updated: 2025-06-24
Glycerol metabolism starts with glycerol is introduced into the cytoplasm through a glycerol channel GlpF Glycerol is then phosphorylated through an ATP mediated glycerol kinase resulting in a Glycerol 3-phosphate. This compound can also be obtained through glycerophosphoglycerol reacting with water through a glycerophosphoryl diester phosphodiesterase producing a benzyl alcohol, a hydrogen ion and a glycerol 3-phosphate or the campound can be introduced into the cytoplasm through a glycerol-3-phosphate:phosphate antiporter. Glycerol 3-phosphate is then metabolized into a dihydroxyacetone phosphate in both aerobic or anaerobic conditions. In anaerobic conditions the metabolism is done through the reaction of glycerol 3-phosphate with a menaquinone mediated by a glycerol-3-phosphate dehydrogenase protein complex. In aerobic conditions, the metabolism is done through the reaction of glycerol 3-phosphate with ubiquinone mediated by a glycerol-3-phosphate dehydrogenase [NAD(P]+]. Dihydroxyacetone phosphate is then introduced into the fructose metabolism by turning a dihydroxyacetone into an isomer through a triosephosphate isomerase resulting in a D-glyceraldehyde 3-phosphate which in turn reacts with a phosphate through a NAD dependent Glyceraldehyde 3-phosphate dehydrogenase resulting in a glyceric acid 1,3-biphosphate. This compound is desphosphorylated by a phosphoglycerate kinase resulting in a 3-phosphoglyceric acid.This compound in turn can either react with a 2,3-bisphosphoglycerate-independent phosphoglycerate mutase or a 2,3-bisphosphoglycerate-independent phosphoglycerate mutase resulting in a 2-phospho-D-glyceric acid. This compound interacts with an enolase resulting in a phosphoenolpyruvic acid and water. Phosphoenolpyruvic acid can react either through a AMP driven phosphoenoylpyruvate synthase or a ADP driven pyruvate kinase protein complex resulting in a pyruvic acid. Pyruvic acid reacts with CoA through a NAD driven pyruvate dehydrogenase complex resulting in a carbon dioxide and a Acetyl-CoA which gets incorporated into the TCA cycle pathway.
References
Glycerol Metabolism IV (Glycerophosphoglycerol) References
Donahue JL, Bownas JL, Niehaus WG, Larson TJ: Purification and characterization of glpX-encoded fructose 1, 6-bisphosphatase, a new enzyme of the glycerol 3-phosphate regulon of Escherichia coli. J Bacteriol. 2000 Oct;182(19):5624-7. doi: 10.1128/jb.182.19.5624-5627.2000.
Pubmed: 10986273
Truniger V, Boos W, Sweet G: Molecular analysis of the glpFKX regions of Escherichia coli and Shigella flexneri. J Bacteriol. 1992 Nov;174(21):6981-91. doi: 10.1128/jb.174.21.6981-6991.1992.
Pubmed: 1400248
Plunkett G 3rd, Burland V, Daniels DL, Blattner FR: Analysis of the Escherichia coli genome. III. DNA sequence of the region from 87.2 to 89.2 minutes. Nucleic Acids Res. 1993 Jul 25;21(15):3391-8. doi: 10.1093/nar/21.15.3391.
Pubmed: 8346018
Sedivy JM, Daldal F, Fraenkel DG: Fructose bisphosphatase of Escherichia coli: cloning of the structural gene (fbp) and preparation of a chromosomal deletion. J Bacteriol. 1984 Jun;158(3):1048-53.
Pubmed: 6327623
Hamilton WD, Harrison DA, Dyer TA: Sequence of the Escherichia coli fructose-1,6-bisphosphatase gene. Nucleic Acids Res. 1988 Sep 12;16(17):8707. doi: 10.1093/nar/16.17.8707.
Pubmed: 2843822
Burland V, Plunkett G 3rd, Sofia HJ, Daniels DL, Blattner FR: Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res. 1995 Jun 25;23(12):2105-19. doi: 10.1093/nar/23.12.2105.
Pubmed: 7610040
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Alefounder PR, Perham RN: Identification, molecular cloning and sequence analysis of a gene cluster encoding the class II fructose 1,6-bisphosphate aldolase, 3-phosphoglycerate kinase and a putative second glyceraldehyde 3-phosphate dehydrogenase of Escherichia coli. Mol Microbiol. 1989 Jun;3(6):723-32. doi: 10.1111/j.1365-2958.1989.tb00221.x.
Pubmed: 2546007
Maupin-Furlow JA, Rosentel JK, Lee JH, Deppenmeier U, Gunsalus RP, Shanmugam KT: Genetic analysis of the modABCD (molybdate transport) operon of Escherichia coli. J Bacteriol. 1995 Sep;177(17):4851-6. doi: 10.1128/jb.177.17.4851-4856.1995.
Pubmed: 7665460
Walkenhorst HM, Hemschemeier SK, Eichenlaub R: Molecular analysis of the molybdate uptake operon, modABCD, of Escherichia coli and modR, a regulatory gene. Microbiol Res. 1995 Nov;150(4):347-61. doi: 10.1016/S0944-5013(11)80016-9.
Pubmed: 8564363
Oshima T, Aiba H, Baba T, Fujita K, Hayashi K, Honjo A, Ikemoto K, Inada T, Itoh T, Kajihara M, Kanai K, Kashimoto K, Kimura S, Kitagawa M, Makino K, Masuda S, Miki T, Mizobuchi K, Mori H, Motomura K, Nakamura Y, Nashimoto H, Nishio Y, Saito N, Horiuchi T, et al.: A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map. DNA Res. 1996 Jun 30;3(3):137-55. doi: 10.1093/dnares/3.3.137.
Pubmed: 8905232
Spring TG, Wold F: The purification and characterization of Escherichia coli enolase. J Biol Chem. 1971 Nov 25;246(22):6797-802.
Pubmed: 4942326
Dannelly HK, Duclos B, Cozzone AJ, Reeves HC: Phosphorylation of Escherichia coli enolase. Biochimie. 1989 Sep-Oct;71(9-10):1095-100. doi: 10.1016/0300-9084(89)90116-8.
Pubmed: 2513001
Chandran V, Luisi BF: Recognition of enolase in the Escherichia coli RNA degradosome. J Mol Biol. 2006 Apr 21;358(1):8-15. doi: 10.1016/j.jmb.2006.02.012. Epub 2006 Feb 21.
Pubmed: 16516921
Ohara O, Dorit RL, Gilbert W: Direct genomic sequencing of bacterial DNA: the pyruvate kinase I gene of Escherichia coli. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6883-7. doi: 10.1073/pnas.86.18.6883.
Pubmed: 2674937
Hensel M, Shea JE, Baumler AJ, Gleeson C, Blattner F, Holden DW: Analysis of the boundaries of Salmonella pathogenicity island 2 and the corresponding chromosomal region of Escherichia coli K-12. J Bacteriol. 1997 Feb;179(4):1105-11. doi: 10.1128/jb.179.4.1105-1111.1997.
Pubmed: 9023191
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Itoh T, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Kasai H, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Seki Y, Horiuchi T, et al.: A 460-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 40.1-50.0 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):379-92. doi: 10.1093/dnares/3.6.379.
Pubmed: 9097040
Misumi Y, Ogata S, Ohkubo K, Hirose S, Ikehara Y: Primary structure of human placental 5'-nucleotidase and identification of the glycolipid anchor in the mature form. Eur J Biochem. 1990 Aug 17;191(3):563-9. doi: 10.1111/j.1432-1033.1990.tb19158.x.
Pubmed: 2129526
Hansen KR, Resta R, Webb CF, Thompson LF: Isolation and characterization of the promoter of the human 5'-nucleotidase (CD73)-encoding gene. Gene. 1995 Dec 29;167(1-2):307-12. doi: 10.1016/0378-1119(95)00574-9.
Pubmed: 8566797
Knapp K, Zebisch M, Pippel J, El-Tayeb A, Muller CE, Strater N: Crystal structure of the human ecto-5'-nucleotidase (CD73): insights into the regulation of purinergic signaling. Structure. 2012 Dec 5;20(12):2161-73. doi: 10.1016/j.str.2012.10.001. Epub 2012 Nov 8.
Pubmed: 23142347
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000934
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings