Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Arginine catabolism: arcD, arcA, arcB, arcC
Pseudomonas aeruginosa
Category:
Metabolite Pathway
Sub-Category:
Signaling
Created: 2025-03-25
Last Updated: 2025-09-07
The regulation of the arcDABC operon. The operon is activated by anr (Transcriptional activator protein) and indirectly activated by low concentrations of oxygen (anaerobic conditions) and high concentrations of arginine. The operon is inhibited by high concentrations of ammonium (end product of arginine catabolism). There are four products form this operon: arcD (Arginine/ornithine antiporter), arcA (Arginine deiminase), arcB (Ornithine carbamoyltransferase) and arcC (Carbamate kinase). These are all used in the catabolism of arginine into ammonium, ATP and hydrogen carbonate. ArcD is a antiporter used to bring arginine into the cell. ArcA is used to turn arginine into citrulline. ArcB is used to turn citrulline to carbomoyl phosphate. ArcC is used to turn carbomoyl phosphate to ammonium, ATP and hydrogen carbonate.
References
Arginine catabolism: arcD, arcA, arcB, arcC References
Winteler HV, Haas D: The homologous regulators ANR of Pseudomonas aeruginosa and FNR of Escherichia coli have overlapping but distinct specificities for anaerobically inducible promoters. Microbiology (Reading). 1996 Mar;142 ( Pt 3):685-693. doi: 10.1099/13500872-142-3-685.
Pubmed: 8868444
Verhoogt HJ, Smit H, Abee T, Gamper M, Driessen AJ, Haas D, Konings WN: arcD, the first gene of the arc operon for anaerobic arginine catabolism in Pseudomonas aeruginosa, encodes an arginine-ornithine exchanger. J Bacteriol. 1992 Mar;174(5):1568-73. doi: 10.1128/jb.174.5.1568-1573.1992.
Pubmed: 1311296
Luthi E, Baur H, Gamper M, Brunner F, Villeval D, Mercenier A, Haas D: The arc operon for anaerobic arginine catabolism in Pseudomonas aeruginosa contains an additional gene, arcD, encoding a membrane protein. Gene. 1990 Mar 1;87(1):37-43. doi: 10.1016/0378-1119(90)90493-b.
Pubmed: 2158926
Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV: Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000 Aug 31;406(6799):959-64. doi: 10.1038/35023079.
Pubmed: 10984043
Baur H, Stalon V, Falmagne P, Luethi E, Haas D: Primary and quaternary structure of the catabolic ornithine carbamoyltransferase from Pseudomonas aeruginosa. Extensive sequence homology with the anabolic ornithine carbamoyltransferases of Escherichia coli. Eur J Biochem. 1987 Jul 1;166(1):111-7. doi: 10.1111/j.1432-1033.1987.tb13489.x.
Pubmed: 3109911
Stalon V, Ramos F, Pierard A, Wiame JM: The occurrence of a catabolic and an anabolic ornithine carbamoyltransferase in Pseudomonas. Biochim Biophys Acta. 1967 May 16;139(1):91-7. doi: 10.1016/0005-2744(67)90115-5.
Pubmed: 4962140
Baur H, Luethi E, Stalon V, Mercenier A, Haas D: Sequence analysis and expression of the arginine-deiminase and carbamate-kinase genes of Pseudomonas aeruginosa. Eur J Biochem. 1989 Jan 15;179(1):53-60. doi: 10.1111/j.1432-1033.1989.tb14520.x.
Pubmed: 2537202
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings