Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Aerobic Glycolysis (Warburg Effect)
Homo sapiens
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2014-04-10
Last Updated: 2022-08-03
The Warburg Effect refers to the phenomenon that occurs in most cancer cells where instead of generating energy with a low rate of glycolysis followed by oxidizing pyruvate via the Krebs cycle in the mitochondria, the pyruvate from a high rate of glycolysis undergoes lactic acid fermentation in the cytosol. As the Krebs cycle is an aerobic process, in normal cells lactate production is reserved for anaerobic conditions. However, cancer cells preferentially utilize glucose for lactate production via this “aerobic glycolysis”, even when oxygen is plentiful. The Warburg Effect is thought to be the result of mutations to oncogenes and tumour suppressor genes. It may be an adaptation to low-oxygen environments within tumours, the result of cancer genes shutting down the mitochondria, or a mechanism to aid cell proliferation via increased glycolysis. Proliferation may occur due to the accumulation of glycolytic intermediates (which lead to the production of nucleotides, amino acids, and fatty acids) after the final enzymatic reaction of glycolysis (phosphoenolpyruvate into pyruvate) is slowed down. This reaction produces lactic acid which leads to a low pH microenvironment and the lactate shuttle can activate angiogenesis factors from surrounding cells. The Warburg Effect involves numerous pathways, including growth factor stimulation, transcriptional activation, and glycolysis promotion.
References
Aerobic Glycolysis (Warburg Effect) References
Gogvadze V, Zhivotovsky B, Orrenius S: The Warburg effect and mitochondrial stability in cancer cells. Mol Aspects Med. 2010 Feb;31(1):60-74. doi: 10.1016/j.mam.2009.12.004. Epub 2009 Dec 6.
Pubmed: 19995572
Samudio I, Fiegl M, Andreeff M: Mitochondrial uncoupling and the Warburg effect: molecular basis for the reprogramming of cancer cell metabolism. Cancer Res. 2009 Mar 15;69(6):2163-6. doi: 10.1158/0008-5472.CAN-08-3722. Epub 2009 Mar 3.
Pubmed: 19258498
Vander Heiden MG, Cantley LC, Thompson CB: Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009 May 22;324(5930):1029-33. doi: 10.1126/science.1160809.
Pubmed: 19460998
WARBURG O: On the origin of cancer cells. Science. 1956 Feb 24;123(3191):309-14.
Pubmed: 13298683
Fitzgerald G, Soro-Arnaiz I, De Bock K: The Warburg Effect in Endothelial Cells and its Potential as an Anti-angiogenic Target in Cancer. Front Cell Dev Biol. 2018 Sep 11;6:100. doi: 10.3389/fcell.2018.00100. eCollection 2018.
Pubmed: 30255018
Papa S, Choy PM, Bubici C: The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene. 2019 Mar;38(13):2223-2240. doi: 10.1038/s41388-018-0582-8. Epub 2018 Nov 28.
Pubmed: 30487597
Polet F, Feron O: Endothelial cell metabolism and tumour angiogenesis: glucose and glutamine as essential fuels and lactate as the driving force. J Intern Med. 2013 Feb;273(2):156-65. doi: 10.1111/joim.12016.
Pubmed: 23216817
Fukumoto H, Seino S, Imura H, Seino Y, Eddy RL, Fukushima Y, Byers MG, Shows TB, Bell GI: Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5434-8. doi: 10.1073/pnas.85.15.5434.
Pubmed: 3399500
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Muzny DM, Scherer SE, Kaul R, Wang J, Yu J, Sudbrak R, Buhay CJ, Chen R, Cree A, Ding Y, Dugan-Rocha S, Gill R, Gunaratne P, Harris RA, Hawes AC, Hernandez J, Hodgson AV, Hume J, Jackson A, Khan ZM, Kovar-Smith C, Lewis LR, Lozado RJ, Metzker ML, Milosavljevic A, Miner GR, Morgan MB, Nazareth LV, Scott G, Sodergren E, Song XZ, Steffen D, Wei S, Wheeler DA, Wright MW, Worley KC, Yuan Y, Zhang Z, Adams CQ, Ansari-Lari MA, Ayele M, Brown MJ, Chen G, Chen Z, Clendenning J, Clerc-Blankenburg KP, Chen R, Chen Z, Davis C, Delgado O, Dinh HH, Dong W, Draper H, Ernst S, Fu G, Gonzalez-Garay ML, Garcia DK, Gillett W, Gu J, Hao B, Haugen E, Havlak P, He X, Hennig S, Hu S, Huang W, Jackson LR, Jacob LS, Kelly SH, Kube M, Levy R, Li Z, Liu B, Liu J, Liu W, Lu J, Maheshwari M, Nguyen BV, Okwuonu GO, Palmeiri A, Pasternak S, Perez LM, Phelps KA, Plopper FJ, Qiang B, Raymond C, Rodriguez R, Saenphimmachak C, Santibanez J, Shen H, Shen Y, Subramanian S, Tabor PE, Verduzco D, Waldron L, Wang J, Wang J, Wang Q, Williams GA, Wong GK, Yao Z, Zhang J, Zhang X, Zhao G, Zhou J, Zhou Y, Nelson D, Lehrach H, Reinhardt R, Naylor SL, Yang H, Olson M, Weinstock G, Gibbs RA: The DNA sequence, annotation and analysis of human chromosome 3. Nature. 2006 Apr 27;440(7088):1194-8. doi: 10.1038/nature04728.
Pubmed: 16641997
Cheung EC, Ludwig RL, Vousden KH: Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20491-6. doi: 10.1073/pnas.1206530109. Epub 2012 Nov 26.
Pubmed: 23185017
Deeb SS, Malkki M, Laakso M: Human hexokinase II: sequence and homology to other hexokinases. Biochem Biophys Res Commun. 1993 Nov 30;197(1):68-74. doi: 10.1006/bbrc.1993.2442.
Pubmed: 8250948
Lehto M, Huang X, Davis EM, Le Beau MM, Laurila E, Eriksson KF, Bell GI, Groop L: Human hexokinase II gene: exon-intron organization, mutation screening in NIDDM, and its relationship to muscle hexokinase activity. Diabetologia. 1995 Dec;38(12):1466-74. doi: 10.1007/bf00400608.
Pubmed: 8786021
Walker JI, Faik P, Morgan MJ: Characterization of the 5' end of the gene for human glucose phosphate isomerase (GPI). Genomics. 1990 Aug;7(4):638-43.
Pubmed: 2387591
Yakirevich E, Naot Y: Cloning of a glucose phosphate isomerase/neuroleukin-like sperm antigen involved in sperm agglutination. Biol Reprod. 2000 Apr;62(4):1016-23. doi: 10.1095/biolreprod62.4.1016.
Pubmed: 10727272
Levanon D, Danciger E, Dafni N, Bernstein Y, Elson A, Moens W, Brandeis M, Groner Y: The primary structure of human liver type phosphofructokinase and its comparison with other types of PFK. DNA. 1989 Dec;8(10):733-43. doi: 10.1089/dna.1989.8.733.
Pubmed: 2533063
Elson A, Levanon D, Brandeis M, Dafni N, Bernstein Y, Danciger E, Groner Y: The structure of the human liver-type phosphofructokinase gene. Genomics. 1990 May;7(1):47-56.
Pubmed: 2139864
Hattori M, Fujiyama A, Taylor TD, Watanabe H, Yada T, Park HS, Toyoda A, Ishii K, Totoki Y, Choi DK, Groner Y, Soeda E, Ohki M, Takagi T, Sakaki Y, Taudien S, Blechschmidt K, Polley A, Menzel U, Delabar J, Kumpf K, Lehmann R, Patterson D, Reichwald K, Rump A, Schillhabel M, Schudy A, Zimmermann W, Rosenthal A, Kudoh J, Schibuya K, Kawasaki K, Asakawa S, Shintani A, Sasaki T, Nagamine K, Mitsuyama S, Antonarakis SE, Minoshima S, Shimizu N, Nordsiek G, Hornischer K, Brant P, Scharfe M, Schon O, Desario A, Reichelt J, Kauer G, Blocker H, Ramser J, Beck A, Klages S, Hennig S, Riesselmann L, Dagand E, Haaf T, Wehrmeyer S, Borzym K, Gardiner K, Nizetic D, Francis F, Lehrach H, Reinhardt R, Yaspo ML: The DNA sequence of human chromosome 21. Nature. 2000 May 18;405(6784):311-9. doi: 10.1038/35012518.
Pubmed: 10830953
Paolella G, Santamaria R, Izzo P, Costanzo P, Salvatore F: Isolation and nucleotide sequence of a full-length cDNA coding for aldolase B from human liver. Nucleic Acids Res. 1984 Oct 11;12(19):7401-10. doi: 10.1093/nar/12.19.7401.
Pubmed: 6548561
Sakakibara M, Mukai T, Yatsuki H, Hori K: Human aldolase isozyme gene: the structure of multispecies aldolase B mRNAs. Nucleic Acids Res. 1985 Jul 25;13(14):5055-69. doi: 10.1093/nar/13.14.5055.
Pubmed: 2410860
Rottmann WH, Tolan DR, Penhoet EE: Complete amino acid sequence for human aldolase B derived from cDNA and genomic clones. Proc Natl Acad Sci U S A. 1984 May;81(9):2738-42. doi: 10.1073/pnas.81.9.2738.
Pubmed: 6585824
Hanauer A, Mandel JL: The glyceraldehyde 3 phosphate dehydrogenase gene family: structure of a human cDNA and of an X chromosome linked pseudogene; amazing complexity of the gene family in mouse. EMBO J. 1984 Nov;3(11):2627-33.
Pubmed: 6096136
Arcari P, Martinelli R, Salvatore F: The complete sequence of a full length cDNA for human liver glyceraldehyde-3-phosphate dehydrogenase: evidence for multiple mRNA species. Nucleic Acids Res. 1984 Dec 11;12(23):9179-89. doi: 10.1093/nar/12.23.9179.
Pubmed: 6096821
Tso JY, Sun XH, Kao TH, Reece KS, Wu R: Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene. Nucleic Acids Res. 1985 Apr 11;13(7):2485-502. doi: 10.1093/nar/13.7.2485.
Pubmed: 2987855
Michelson AM, Markham AF, Orkin SH: Isolation and DNA sequence of a full-length cDNA clone for human X chromosome-encoded phosphoglycerate kinase. Proc Natl Acad Sci U S A. 1983 Jan;80(2):472-6. doi: 10.1073/pnas.80.2.472.
Pubmed: 6188151
Michelson AM, Blake CC, Evans ST, Orkin SH: Structure of the human phosphoglycerate kinase gene and the intron-mediated evolution and dispersal of the nucleotide-binding domain. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6965-9. doi: 10.1073/pnas.82.20.6965.
Pubmed: 2995995
Castella-Escola J, Ojcius DM, LeBoulch P, Joulin V, Blouquit Y, Garel MC, Valentin C, Rosa R, Climent-Romeo F, Cohen-Solal M: Isolation and characterization of the gene encoding the muscle-specific isozyme of human phosphoglycerate mutase. Gene. 1990 Jul 16;91(2):225-32. doi: 10.1016/0378-1119(90)90092-6.
Pubmed: 2145198
Tsujino S, Sakoda S, Mizuno R, Kobayashi T, Suzuki T, Kishimoto S, Shanske S, DiMauro S, Schon EA: Structure of the gene encoding the muscle-specific subunit of human phosphoglycerate mutase. J Biol Chem. 1989 Sep 15;264(26):15334-7.
Pubmed: 2549058
Shanske S, Sakoda S, Hermodson MA, DiMauro S, Schon EA: Isolation of a cDNA encoding the muscle-specific subunit of human phosphoglycerate mutase. J Biol Chem. 1987 Oct 25;262(30):14612-7.
Pubmed: 2822696
Feo S, Arcuri D, Piddini E, Passantino R, Giallongo A: ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Lett. 2000 May 4;473(1):47-52. doi: 10.1016/s0014-5793(00)01494-0.
Pubmed: 10802057
Giallongo A, Feo S, Moore R, Croce CM, Showe LC: Molecular cloning and nucleotide sequence of a full-length cDNA for human alpha enolase. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6741-5. doi: 10.1073/pnas.83.18.6741.
Pubmed: 3529090
Giallongo A, Oliva D, Cali L, Barba G, Barbieri G, Feo S: Structure of the human gene for alpha-enolase. Eur J Biochem. 1990 Jul 5;190(3):567-73. doi: 10.1111/j.1432-1033.1990.tb15611.x.
Pubmed: 2373081
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings