Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
TCA Cycle (Ubiquinol-9)
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-08-13
Last Updated: 2019-12-13
The citric acid cycle (also named tricarboxylic acid (TCA) cycle or the Krebs cycle), is a collection of 9 enzyme-catalyzed chemical reactions that occur in all living cells undergoing aerobic respiration. The citric acid cycle itself was officially identified in 1937 by Hans Adolf Krebs, who received the Nobel Prize for this discovery in 1953. In eukaryotes, the citric acid cycle occurs in the mitochondria. In prokaryotes, the TCA cycle occurs in the cytoplasm. The TCA cycle starts with acetyl-CoA, which is the “fuel†for the entire cycle. This important molecule comes from the breakdown of glycogen (a stored form of glucose), fats, and many amino acids. At beginning, acetyl-CoA first transfers its 2-carbon acetyl group to the 4-carbon acceptor compound called oxaloacetate to form the 6-carbon compound (citrate) for which the cycle is named. The resulting citrate will have numbers of chemical transformations, whereby it loses one carboxyl group (leading to the 5-carbon compound called alpha-ketoglutarate) and then a second carboxyl group (leading to the 4-carbon compound called succinate). Succinate molecule is further oxidized to fumarate, then malate and finally oxaloacetate. The regeneration of the 4-carbon oxaloacetate, allows the TCA cycle to continue. Oxidation step generates energy that is transferring energy-rich electrons for NAD+ to form NADH in TCA cycle. Each acetyl group will generate 3 NADH in TCA cycle.
References
TCA Cycle (Ubiquinol-9) References
SWIM HE, KRAMPITZ LO: Acetic acid oxidation by Escherichia coli; evidence for the occurrence of a tricarboxylic acid cycle. J Bacteriol. 1954 Apr;67(4):419-25.
Pubmed: 13152052
Walsh K, Koshland DE Jr: Characterization of rate-controlling steps in vivo by use of an adjustable expression vector. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3577-81.
Pubmed: 3889909
Walsh K, Schena M, Flint AJ, Koshland DE Jr: Compensatory regulation in metabolic pathways--responses to increases and decreases in citrate synthase levels. Biochem Soc Symp. 1987;54:183-95.
Pubmed: 3332995
Cunningham L, Gruer MJ, Guest JR: Transcriptional regulation of the aconitase genes (acnA and acnB) of Escherichia coli. Microbiology. 1997 Dec;143 ( Pt 12):3795-805. doi: 10.1099/00221287-143-12-3795.
Pubmed: 9421904
Prodromou C, Artymiuk PJ, Guest JR: The aconitase of Escherichia coli. Nucleotide sequence of the aconitase gene and amino acid sequence similarity with mitochondrial aconitases, the iron-responsive-element-binding protein and isopropylmalate isomerases. Eur J Biochem. 1992 Mar 1;204(2):599-609. doi: 10.1111/j.1432-1033.1992.tb16673.x.
Pubmed: 1541275
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Fujita N, Mori H, Yura T, Ishihama A: Systematic sequencing of the Escherichia coli genome: analysis of the 2.4-4.1 min (110,917-193,643 bp) region. Nucleic Acids Res. 1994 May 11;22(9):1637-9. doi: 10.1093/nar/22.9.1637.
Pubmed: 8202364
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Wang FS, Whittam TS, Selander RK: Evolutionary genetics of the isocitrate dehydrogenase gene (icd) in Escherichia coli and Salmonella enterica. J Bacteriol. 1997 Nov;179(21):6551-9. doi: 10.1128/jb.179.21.6551-6559.1997.
Pubmed: 9352899
Thorsness PE, Koshland DE Jr: Inactivation of isocitrate dehydrogenase by phosphorylation is mediated by the negative charge of the phosphate. J Biol Chem. 1987 Aug 5;262(22):10422-5.
Pubmed: 3112144
Oshima T, Aiba H, Baba T, Fujita K, Hayashi K, Honjo A, Ikemoto K, Inada T, Itoh T, Kajihara M, Kanai K, Kashimoto K, Kimura S, Kitagawa M, Makino K, Masuda S, Miki T, Mizobuchi K, Mori H, Motomura K, Nakamura Y, Nashimoto H, Nishio Y, Saito N, Horiuchi T, et al.: A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map. DNA Res. 1996 Jun 30;3(3):137-55. doi: 10.1093/dnares/3.3.137.
Pubmed: 8905232
Darlison MG, Spencer ME, Guest JR: Nucleotide sequence of the sucA gene encoding the 2-oxoglutarate dehydrogenase of Escherichia coli K12. Eur J Biochem. 1984 Jun 1;141(2):351-9. doi: 10.1111/j.1432-1033.1984.tb08199.x.
Pubmed: 6376123
Spencer ME, Darlison MG, Stephens PE, Duckenfield IK, Guest JR: Nucleotide sequence of the sucB gene encoding the dihydrolipoamide succinyltransferase of Escherichia coli K12 and homology with the corresponding acetyltransferase. Eur J Biochem. 1984 Jun 1;141(2):361-74. doi: 10.1111/j.1432-1033.1984.tb08200.x.
Pubmed: 6376124
Stephens PE, Lewis HM, Darlison MG, Guest JR: Nucleotide sequence of the lipoamide dehydrogenase gene of Escherichia coli K12. Eur J Biochem. 1983 Oct 3;135(3):519-27. doi: 10.1111/j.1432-1033.1983.tb07683.x.
Pubmed: 6352260
Buck D, Spencer ME, Guest JR: Primary structure of the succinyl-CoA synthetase of Escherichia coli. Biochemistry. 1985 Oct 22;24(22):6245-52. doi: 10.1021/bi00343a031.
Pubmed: 3002435
Itoh T, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Kasai H, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Seki Y, Horiuchi T, et al.: A 460-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 40.1-50.0 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):379-92. doi: 10.1093/dnares/3.6.379.
Pubmed: 9097040
This pathway was generated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Generated from SMP0000802
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings