Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
NAD Phosphorylation and Dephosphorylation
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-10-13
Last Updated: 2019-08-13
NAD kinase is required for converting NAD to NADP in various organisms such as groups of archaea, eubacteria and eukaryotes. For example, NAD kinase has shown its important role for the growth in Salmonella enterica and the importance in E.coli. NADP can be converted back to NAD via facilitation of alkaline phosphatase with water (hydroxylation).
References
NAD Phosphorylation and Dephosphorylation References
Lundquist R, Olivera BM: Pyridine nucleotide metabolism in Escherichia coli. I. Exponential growth. J Biol Chem. 1971 Feb 25;246(4):1107-16.
Pubmed: 5543676
Kawai S, Mori S, Mukai T, Hashimoto W, Murata K: Molecular characterization of Escherichia coli NAD kinase. Eur J Biochem. 2001 Aug;268(15):4359-65. doi: 10.1046/j.1432-1327.2001.02358.x.
Pubmed: 11488932
Zerez CR, Moul DE, Gomez EG, Lopez VM, Andreoli AJ: Negative modulation of Escherichia coli NAD kinase by NADPH and NADH. J Bacteriol. 1987 Jan;169(1):184-8. doi: 10.1128/jb.169.1.184-188.1987.
Pubmed: 3025169
Mori S, Kawai S, Shi F, Mikami B, Murata K: Molecular conversion of NAD kinase to NADH kinase through single amino acid residue substitution. J Biol Chem. 2005 Jun 24;280(25):24104-12. doi: 10.1074/jbc.M502518200. Epub 2005 Apr 26.
Pubmed: 15855156
Clarke DM, Loo TW, Gillam S, Bragg PD: Nucleotide sequence of the pntA and pntB genes encoding the pyridine nucleotide transhydrogenase of Escherichia coli. Eur J Biochem. 1986 Aug 1;158(3):647-53. doi: 10.1111/j.1432-1033.1986.tb09802.x.
Pubmed: 3525165
Ahmad S, Glavas NA, Bragg PD: A mutation at Gly314 of the beta subunit of the Escherichia coli pyridine nucleotide transhydrogenase abolishes activity and affects the NADP(H)-induced conformational change. Eur J Biochem. 1992 Jul 15;207(2):733-9. doi: 10.1111/j.1432-1033.1992.tb17103.x.
Pubmed: 1633824
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
DuBose RF, Dykhuizen DE, Hartl DL: Genetic exchange among natural isolates of bacteria: recombination within the phoA gene of Escherichia coli. Proc Natl Acad Sci U S A. 1988 Sep;85(18):7036-40. doi: 10.1073/pnas.85.18.7036.
Pubmed: 3045828
Agrawal DK, Wanner BL: A phoA structural gene mutation that conditionally affects formation of the enzyme bacterial alkaline phosphatase. J Bacteriol. 1990 Jun;172(6):3180-90. doi: 10.1128/jb.172.6.3180-3190.1990.
Pubmed: 2345142
Kikuchi Y, Yoda K, Yamasaki M, Tamura G: The nucleotide sequence of the promoter and the amino-terminal region of alkaline phosphatase structural gene (phoA) of Escherichia coli. Nucleic Acids Res. 1981 Nov 11;9(21):5671-8. doi: 10.1093/nar/9.21.5671.
Pubmed: 6273802
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings