Loading Pathway...
Error: Pathway image not found.
Hide 
    Pathway Description
      Cardiolipin Biosynthesis
Saccharomyces cerevisiae
            Category:
                Metabolite Pathway
                Sub-Category:
                Metabolic
            Created: 2016-01-26
          Last Updated: 2024-11-18
        
          The biosynthesis of cardiolipin (CL) begins in the endoplasmic reticulum. Glycerone phosphate interacts with an NADPH resulting in the release of NADP and glycerol 3-phosphate. Glycerol 3-phosphate reacts with glycerol-3-phosphate O-acyltransferase resulting in the release of 1-acyl-sn-glycerol 3-phosphate (lysophosphatidic acid or LysoPA). The resulting compound reacts with an acyl-CoA via lysophosphatidate acyltransferase, resulting in the release of a phosphatidic acid (PA or 1,2-diacyl-sn-glycerol 3-phosphate). Phosphatidic acid is transported to the mitochondrial outer membrane. Once in, it gets transported into the mitochondrial inner membrane. The phosphatidic acid reacts with cytidine triphosphate through a phosphatidate cytidyltransferase resulting in the release of a CDP-diacylglycerol (CDP-DG). The resulting compound reacts with a glycerol 3-phosphate through a CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase resulting in the release of cytidine monophosphate and phosphatidylglycerophosphate (PGP). PGP reacts with phosphatidylglycerophosphatase GEP4 resulting in the release of phosphatidylglycerol (PG). PG reacts with a CDP-DG through a cardiolipin synthase resulting in the release of CL and cytidine monophosphate. Cardiolipin remodelling begins with the removal of an acyl chain to form 1-monolysocardiolipin (1-MLCL) via the lipase Cld1p. This is followed by the enzyme Taz1p transferring an acyl chain from a phospholipid (e.g. phosphatidylcholine) to reform cardiolipin.
        
      References
      
      Cardiolipin Biosynthesis References
Baile MG, Lu YW, Claypool SM: The topology and regulation of cardiolipin biosynthesis and remodeling in yeast. Chem Phys Lipids. 2014 Apr;179:25-31. doi: 10.1016/j.chemphyslip.2013.10.008. Epub 2013 Nov 1.
                  Pubmed: 24184646
              Burgess SM, Delannoy M, Jensen RE: MMM1 encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondria. J Cell Biol. 1994 Sep;126(6):1375-91. doi: 10.1083/jcb.126.6.1375.
                  Pubmed: 8089172
              Miosga T, Zimmermann FK: Sequence analysis of the CEN12 region of Saccharomyces cerevisiae on a 43.7 kb fragment of chromosome XII including an open reading frame homologous to the human cystic fibrosis transmembrane conductance regulator protein CFTR. Yeast. 1996 Jun 15;12(7):693-708. doi: 10.1002/(SICI)1097-0061(19960615)12:7%3C693::AID-YEA956%3E3.0.CO;2-G.
                  Pubmed: 8810043
              Johnston M, Hillier L, Riles L, Albermann K, Andre B, Ansorge W, Benes V, Bruckner M, Delius H, Dubois E, Dusterhoft A, Entian KD, Floeth M, Goffeau A, Hebling U, Heumann K, Heuss-Neitzel D, Hilbert H, Hilger F, Kleine K, Kotter P, Louis EJ, Messenguy F, Mewes HW, Hoheisel JD, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome XII. Nature. 1997 May 29;387(6632 Suppl):87-90.
                  Pubmed: 9169871
              Berger KH, Sogo LF, Yaffe MP: Mdm12p, a component required for mitochondrial inheritance that is conserved between budding and fission yeast. J Cell Biol. 1997 Feb 10;136(3):545-53. doi: 10.1083/jcb.136.3.545.
                  Pubmed: 9024686
              Dujon B, Albermann K, Aldea M, Alexandraki D, Ansorge W, Arino J, Benes V, Bohn C, Bolotin-Fukuhara M, Bordonne R, Boyer J, Camasses A, Casamayor A, Casas C, Cheret G, Cziepluch C, Daignan-Fornier B, Dang DV, de Haan M, Delius H, Durand P, Fairhead C, Feldmann H, Gaillon L, Kleine K, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome XV. Nature. 1997 May 29;387(6632 Suppl):98-102.
                  Pubmed: 9169874
              Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, Dwight SS, Hitz BC, Karra K, Nash RS, Weng S, Wong ED, Lloyd P, Skrzypek MS, Miyasato SR, Simison M, Cherry JM: The reference genome sequence of Saccharomyces cerevisiae: then and now. G3 (Bethesda). 2014 Mar 20;4(3):389-98. doi: 10.1534/g3.113.008995.
                  Pubmed: 24374639
              Sogo LF, Yaffe MP: Regulation of mitochondrial morphology and inheritance by Mdm10p, a protein of the mitochondrial outer membrane. J Cell Biol. 1994 Sep;126(6):1361-73. doi: 10.1083/jcb.126.6.1361.
                  Pubmed: 8089171
              Clark MW, Keng T, Storms RK, Zhong W, Fortin N, Zeng B, Delaney S, Ouellette BF, Barton AB, Kaback DB, et al.: Sequencing of chromosome I of Saccharomyces cerevisiae: analysis of the 42 kbp SPO7-CENI-CDC15 region. Yeast. 1994 Apr;10(4):535-41. doi: 10.1002/yea.320100413.
                  Pubmed: 7941740
              Bussey H, Kaback DB, Zhong W, Vo DT, Clark MW, Fortin N, Hall J, Ouellette BF, Keng T, Barton AB, et al.: The nucleotide sequence of chromosome I from Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3809-13. doi: 10.1073/pnas.92.9.3809.
                  Pubmed: 7731988
              Rieger M, Bruckner M, Schafer M, Muller-Auer S: Sequence analysis of 203 kilobases from Saccharomyces cerevisiae chromosome VII. Yeast. 1997 Sep 15;13(11):1077-90. doi: 10.1002/(SICI)1097-0061(19970915)13:11<1077::AID-YEA152>3.0.CO;2-Y.
                  Pubmed: 9290212
              Tettelin H, Agostoni Carbone ML, Albermann K, Albers M, Arroyo J, Backes U, Barreiros T, Bertani I, Bjourson AJ, Bruckner M, Bruschi CV, Carignani G, Castagnoli L, Cerdan E, Clemente ML, Coblenz A, Coglievina M, Coissac E, Defoor E, Del Bino S, Delius H, Delneri D, de Wergifosse P, Dujon B, Kleine K, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome VII. Nature. 1997 May 29;387(6632 Suppl):81-4.
                  Pubmed: 9169869
              Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK: Global analysis of protein localization in budding yeast. Nature. 2003 Oct 16;425(6959):686-91. doi: 10.1038/nature02026.
                  Pubmed: 14562095
              Rasmussen SW: Sequence of a 28.6 kb region of yeast chromosome XI includes the FBA1 and TOA2 genes, an open reading frame (ORF) similar to a translationally controlled tumour protein, one ORF containing motifs also found in plant storage proteins and 13 ORFs with weak or no homology to known proteins. Yeast. 1994 Apr;10 Suppl A:S63-8. doi: 10.1002/yea.320100008.
                  Pubmed: 8091862
              Dujon B, Alexandraki D, Andre B, Ansorge W, Baladron V, Ballesta JP, Banrevi A, Bolle PA, Bolotin-Fukuhara M, Bossier P, Bou G, Boyer J, Bultrago MJ, Cheret G, Colleaux L, Dalgnan-Fornler B, del Rey F, Dlon C, Domdey H, Dusterhoft A, Dusterhus S, Entlan KD, Erfle H, Esteban PF, Feldmann H, Fernandes L, Robo GM, Fritz C, Fukuhara H, Gabel C, Gaillon L, Carcia-Cantalejo JM, Garcia-Ramirez JJ, Gent NE, Ghazvini M, Goffeau A, Gonzalez A, Grothues D, Guerreiro P, Hegemann J, Hewitt N, Hilger F, Hollenberg CP, Horaitis O, Indge KJ, Jacquier A, James CM, Jauniaux C, Jimenez A, Keuchel H, Kirchrath L, Kleine K, Kotter P, Legrain P, Liebl S, Louis EJ, Maia e Silva A, Marck C, Monnier AL, Mostl D, Muller S, Obermaier B, Oliver SG, Pallier C, Pascolo S, Pfeiffer F, Philippsen P, Planta RJ, Pohl FM, Pohl TM, Pohlmann R, Portetelle D, Purnelle B, Puzos V, Ramezani Rad M, Rasmussen SW, Remacha M, Revuelta JL, Richard GF, Rieger M, Rodrigues-Pousada C, Rose M, Rupp T, Santos MA, Schwager C, Sensen C, Skala J, Soares H, Sor F, Stegemann J, Tettelin H, Thierry A, Tzermia M, Urrestarazu LA, van Dyck L, Van Vliet-Reedijk JC, Valens M, Vandenbo M, Vilela C, Vissers S, von Wettstein D, Voss H, Wiemann S, Xu G, Zimmermann J, Haasemann M, Becker I, Mewes HW: Complete DNA sequence of yeast chromosome XI. Nature. 1994 Jun 2;369(6479):371-8. doi: 10.1038/369371a0.
                  Pubmed: 8196765
              Albertyn J, Hohmann S, Thevelein JM, Prior BA: GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol. 1994 Jun;14(6):4135-44. doi: 10.1128/mcb.14.6.4135.
                  Pubmed: 8196651
              Wang HT, Rahaim P, Robbins P, Yocum RR: Cloning, sequence, and disruption of the Saccharomyces diastaticus DAR1 gene encoding a glycerol-3-phosphate dehydrogenase. J Bacteriol. 1994 Nov;176(22):7091-5. doi: 10.1128/jb.176.22.7091-7095.1994.
                  Pubmed: 7961476
              Valadi A, Granath K, Gustafsson L, Adler L: Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production. J Biol Chem. 2004 Sep 17;279(38):39677-85. doi: 10.1074/jbc.M403310200. Epub 2004 Jun 21.
                  Pubmed: 15210723
              Eriksson P, Andre L, Ansell R, Blomberg A, Adler L: Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol Microbiol. 1995 Jul;17(1):95-107. doi: 10.1111/j.1365-2958.1995.mmi_17010095.x.
                  Pubmed: 7476212
              Mannhaupt G, Vetter I, Schwarzlose C, Mitzel S, Feldmann H: Analysis of a 26 kb region on the left arm of yeast chromosome XV. Yeast. 1996 Jan;12(1):67-76. doi: 10.1002/(SICI)1097-0061(199601)12:1%3C67::AID-YEA884%3E3.0.CO;2-F.
                  Pubmed: 8789261
              Zheng Z, Zou J: The initial step of the glycerolipid pathway: identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae. J Biol Chem. 2001 Nov 9;276(45):41710-6. doi: 10.1074/jbc.M104749200. Epub 2001 Sep 5.
                  Pubmed: 11544256
              Highlighted elements will appear in red.
        
          
          
        
      
      Highlight Compounds
      Highlight Proteins
      Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
        
          
          
        
      
      Visualize Compound Data
      Visualize Protein Data
      Downloads
      
    Settings