Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
CD40L Signalling Pathway
Homo sapiens
Category:
Protein Pathway
Sub-Categories:
Apoptosis Signaling
Gene Regulatory
Immunological
Cellular Response
Created: 2018-08-14
Last Updated: 2019-08-16
CD40 is a part of the tumor necrosis factor (TNF) receptor superfamily. When bound to it’s main ligand CD40L, also known as CD154, CD40-CD40L interaction initializes the activation and proliferation of B lymphocytes or results in carcinoma cells apoptosis.
CD40 can be expressed on many different cell surfaces such as endothelial cells, fibroblasts, hematopoietic progenitors, platelets, and basal epithelial cells. When combined with the variety of environments CD40 presenting cells can be in, the differing effects resulting from CD40 signalling is vast. However, one characteristic all CD40 mediated signalling has in common is that instead of using kinase to mediate signal transduction, signalling is performed through downstream adapter molecules. Some pathways activated by CD40-CD40L signalling include the activation of nuclear factor-κB, p38 mitogen activated protein kinase, c-Jun-NH2-kinase, signal transducers and activators of transcription, and phosphoinositide 3-kinase pathways. All of which ultimately help regulate alterations in gene expression.
References
CD40L Signalling Pathway References
Vonderheide RH: Prospect of targeting the CD40 pathway for cancer therapy. Clin Cancer Res. 2007 Feb 15;13(4):1083-8. doi: 10.1158/1078-0432.CCR-06-1893.
Pubmed: 17317815
Cildir G, Low KC, Tergaonkar V: Noncanonical NF-kappaB Signaling in Health and Disease. Trends Mol Med. 2016 May;22(5):414-429. doi: 10.1016/j.molmed.2016.03.002. Epub 2016 Apr 7.
Pubmed: 27068135
Zhang B, Wu T, Chen M, Zhou Y, Yi D, Guo R: The CD40/CD40L system: a new therapeutic target for disease. Immunol Lett. 2013 Jun;153(1-2):58-61. doi: 10.1016/j.imlet.2013.07.005. Epub 2013 Jul 25.
Pubmed: 23892087
Barthels C, Ogrinc A, Steyer V, Meier S, Simon F, Wimmer M, Blutke A, Straub T, Zimber-Strobl U, Lutgens E, Marconi P, Ohnmacht C, Garzetti D, Stecher B, Brocker T: CD40-signalling abrogates induction of RORgammat(+) Treg cells by intestinal CD103(+) DCs and causes fatal colitis. Nat Commun. 2017 Mar 9;8:14715. doi: 10.1038/ncomms14715.
Pubmed: 28276457
Shimadzu M, Nunoi H, Terasaki H, Ninomiya R, Iwata M, Kanegasaka S, Matsuda I: Structural organization of the gene for CD40 ligand: molecular analysis for diagnosis of X-linked hyper-IgM syndrome. Biochim Biophys Acta. 1995 Jan 2;1260(1):67-72. doi: 10.1016/0167-4781(94)00179-7.
Pubmed: 7999797
Korthauer U, Graf D, Mages HW, Briere F, Padayachee M, Malcolm S, Ugazio AG, Notarangelo LD, Levinsky RJ, Kroczek RA: Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature. 1993 Feb 11;361(6412):539-41. doi: 10.1038/361539a0.
Pubmed: 7679206
DiSanto JP, Bonnefoy JY, Gauchat JF, Fischer A, de Saint Basile G: CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM. Nature. 1993 Feb 11;361(6412):541-3. doi: 10.1038/361541a0.
Pubmed: 8094231
Tone M, Tone Y, Fairchild PJ, Wykes M, Waldmann H: Regulation of CD40 function by its isoforms generated through alternative splicing. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1751-6. doi: 10.1073/pnas.98.4.1751.
Pubmed: 11172023
Khandekar SS, Silverman C, Wells-Marani J, Bacon AM, Birrell H, Brigham-Burke M, DeMarini DJ, Jonak ZL, Camilleri P, Fishman-Lobell J: Determination of carbohydrate structures N-linked to soluble CD154 and characterization of the interactions of CD40 with CD154 expressed in Pichia pastoris and Chinese hamster ovary cells. Protein Expr Purif. 2001 Nov;23(2):301-10. doi: 10.1006/prep.2001.1501.
Pubmed: 11676606
Sato T, Irie S, Reed JC: A novel member of the TRAF family of putative signal transducing proteins binds to the cytosolic domain of CD40. FEBS Lett. 1995 Jan 23;358(2):113-8. doi: 10.1016/0014-5793(94)01406-q.
Pubmed: 7530216
Hu HM, O'Rourke K, Boguski MS, Dixit VM: A novel RING finger protein interacts with the cytoplasmic domain of CD40. J Biol Chem. 1994 Dec 2;269(48):30069-72.
Pubmed: 7527023
Mosialos G, Birkenbach M, Yalamanchili R, VanArsdale T, Ware C, Kieff E: The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell. 1995 Feb 10;80(3):389-99. doi: 10.1016/0092-8674(95)90489-1.
Pubmed: 7859281
Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV: TRAF6 is a signal transducer for interleukin-1. Nature. 1996 Oct 3;383(6599):443-6. doi: 10.1038/383443a0.
Pubmed: 8837778
Khursigara G, Orlinick JR, Chao MV: Association of the p75 neurotrophin receptor with TRAF6. J Biol Chem. 1999 Jan 29;274(5):2597-600. doi: 10.1074/jbc.274.5.2597.
Pubmed: 9915784
Wong BR, Besser D, Kim N, Arron JR, Vologodskaia M, Hanafusa H, Choi Y: TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell. 1999 Dec;4(6):1041-9.
Pubmed: 10635328
Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Heys JR, Landvatter SW, Strickler JE, McLaughlin MM, Siemens IR, Fisher SM, Livi GP, White JR, Adams JL, Young PR: A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature. 1994 Dec 22-29;372(6508):739-46. doi: 10.1038/372739a0.
Pubmed: 7997261
Han J, Richter B, Li Z, Kravchenko V, Ulevitch RJ: Molecular cloning of human p38 MAP kinase. Biochim Biophys Acta. 1995 Mar 16;1265(2-3):224-7. doi: 10.1016/0167-4889(95)00002-a.
Pubmed: 7696354
Zervos AS, Faccio L, Gatto JP, Kyriakis JM, Brent R: Mxi2, a mitogen-activated protein kinase that recognizes and phosphorylates Max protein. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10531-4. doi: 10.1073/pnas.92.23.10531.
Pubmed: 7479834
Pearlman A, Loke J, Le Caignec C, White S, Chin L, Friedman A, Warr N, Willan J, Brauer D, Farmer C, Brooks E, Oddoux C, Riley B, Shajahan S, Camerino G, Homfray T, Crosby AH, Couper J, David A, Greenfield A, Sinclair A, Ostrer H: Mutations in MAP3K1 cause 46,XY disorders of sex development and implicate a common signal transduction pathway in human testis determination. Am J Hum Genet. 2010 Dec 10;87(6):898-904. doi: 10.1016/j.ajhg.2010.11.003.
Pubmed: 21129722
Schmutz J, Martin J, Terry A, Couronne O, Grimwood J, Lowry S, Gordon LA, Scott D, Xie G, Huang W, Hellsten U, Tran-Gyamfi M, She X, Prabhakar S, Aerts A, Altherr M, Bajorek E, Black S, Branscomb E, Caoile C, Challacombe JF, Chan YM, Denys M, Detter JC, Escobar J, Flowers D, Fotopulos D, Glavina T, Gomez M, Gonzales E, Goodstein D, Grigoriev I, Groza M, Hammon N, Hawkins T, Haydu L, Israni S, Jett J, Kadner K, Kimball H, Kobayashi A, Lopez F, Lou Y, Martinez D, Medina C, Morgan J, Nandkeshwar R, Noonan JP, Pitluck S, Pollard M, Predki P, Priest J, Ramirez L, Retterer J, Rodriguez A, Rogers S, Salamov A, Salazar A, Thayer N, Tice H, Tsai M, Ustaszewska A, Vo N, Wheeler J, Wu K, Yang J, Dickson M, Cheng JF, Eichler EE, Olsen A, Pennacchio LA, Rokhsar DS, Richardson P, Lucas SM, Myers RM, Rubin EM: The DNA sequence and comparative analysis of human chromosome 5. Nature. 2004 Sep 16;431(7006):268-74. doi: 10.1038/nature02919.
Pubmed: 15372022
Xia Y, Wu Z, Su B, Murray B, Karin M: JNKK1 organizes a MAP kinase module through specific and sequential interactions with upstream and downstream components mediated by its amino-terminal extension. Genes Dev. 1998 Nov 1;12(21):3369-81. doi: 10.1101/gad.12.21.3369.
Pubmed: 9808624
Keyse SM, Emslie EA: Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature. 1992 Oct 15;359(6396):644-7. doi: 10.1038/359644a0.
Pubmed: 1406996
Kwak SP, Hakes DJ, Martell KJ, Dixon JE: Isolation and characterization of a human dual specificity protein-tyrosine phosphatase gene. J Biol Chem. 1994 Feb 4;269(5):3596-604.
Pubmed: 8106404
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Connelly MA, Marcu KB: CHUK, a new member of the helix-loop-helix and leucine zipper families of interacting proteins, contains a serine-threonine kinase catalytic domain. Cell Mol Biol Res. 1995;41(6):537-49.
Pubmed: 8777433
Regnier CH, Song HY, Gao X, Goeddel DV, Cao Z, Rothe M: Identification and characterization of an IkappaB kinase. Cell. 1997 Jul 25;90(2):373-83. doi: 10.1016/s0092-8674(00)80344-x.
Pubmed: 9244310
DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M: A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature. 1997 Aug 7;388(6642):548-54. doi: 10.1038/41493.
Pubmed: 9252186
Slaugenhaupt SA, Blumenfeld A, Gill SP, Leyne M, Mull J, Cuajungco MP, Liebert CB, Chadwick B, Idelson M, Reznik L, Robbins C, Makalowska I, Brownstein M, Krappmann D, Scheidereit C, Maayan C, Axelrod FB, Gusella JF: Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet. 2001 Mar;68(3):598-605. doi: 10.1086/318810. Epub 2001 Jan 22.
Pubmed: 11179008
Cohen L, Henzel WJ, Baeuerle PA: IKAP is a scaffold protein of the IkappaB kinase complex. Nature. 1998 Sep 17;395(6699):292-6. doi: 10.1038/26254.
Pubmed: 9751059
Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S: Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet. 2004 Jan;36(1):40-5. doi: 10.1038/ng1285. Epub 2003 Dec 21.
Pubmed: 14702039
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings