Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Pyruvate Metabolism
Saccharomyces cerevisiae
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2016-02-05
Last Updated: 2019-08-14
The metabolism of pyruvate begins with its biosynthesis which can happen through 5 different sets of reactions.
A) Lactaldehyde reacts with an NADPH dependent methylglyoxal reductase results in the release of a pyruvaldehyde. Pyruvaldehyde reacts with glutathione through a lactylglutathione lyase resulting in the release of s-lactoylglutathione. The latter compound then reacts with water through a hydroxyacylglutathione hydrolase resulting in the release of glutathione and D-lactic acid. Lactic acid then reacts with a ferricytochrome c through a D-lactate dehydrogenase resulting in the release of ferrocytochrome c, a hydrogen ion and pyruvic acid.
B) L-lactic acid reacts with a ferricytochrome c through a L-lactate dehydrogenase resulting in the release of ferrocytochrome c, a hydrogen ion and pyruvic acid.
C)Phosphoenolpyruvic acid reacts with an ADP through pyruvate kinase II resulting in the release of pyruvic acid.
D)Phosphoenolpyruvic acid reacts in a reversible reaction with an ADP or ATP driven phosphoenolpyruvate carboxykinase resulting in the release of oxalacetic acid which reacts with ADP driven pyruvate carboxylase resulting in the release of pyruvic acid.
E)L-malic acid reacts in a reversible reaction through NAD driven malate dehydrogenase resulting in the release of pyruvic acid.
Pyruvic acid is degraded through 2 sets of reactions
a)Pyruvic acid reacts with a pyruvate decarboxylase resulting in the release of acetaldehyde. This compound then reacts with alcohol dehydrogenase resulting in the release of ethanol
b)Pyruvic acid reacts with a Pyruvate dehydrogenase complex resulting in the release of 2-(a-Hydroxyethyl)thiamine diphosphate. The latter compound reacts with a Pyruvate dehydrogenase complex resulting in the release of S-Acetyldihydrolipoamide-E reacts with a Pyruvate dehydrogenase complex resulting in the release of acetyl-CoA. Acetyl CoA can then be metabolized through different reactions to produce the resulting acetate, acetyl adenylate, isopropylmalic acid acetoacetyl coa, malonyl coa or homocitric acid
References
Pyruvate Metabolism References
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M: KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016 Jan 4;44(D1):D457-62. doi: 10.1093/nar/gkv1070. Epub 2015 Oct 17.
Pubmed: 26476454
Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000 Jan 1;28(1):27-30.
Pubmed: 10592173
Warringer J, Blomberg A: Involvement of yeast YOL151W/GRE2 in ergosterol metabolism. Yeast. 2006 Apr 15;23(5):389-98. doi: 10.1002/yea.1363.
Pubmed: 16598690
Casamayor A, Aldea M, Casas C, Herrero E, Gamo FJ, Lafuente MJ, Gancedo C, Arino J: DNA sequence analysis of a 13 kbp fragment of the left arm of yeast chromosome XV containing seven new open reading frames. Yeast. 1995 Oct;11(13):1281-8. doi: 10.1002/yea.320111308.
Pubmed: 8553699
Dujon B, Albermann K, Aldea M, Alexandraki D, Ansorge W, Arino J, Benes V, Bohn C, Bolotin-Fukuhara M, Bordonne R, Boyer J, Camasses A, Casamayor A, Casas C, Cheret G, Cziepluch C, Daignan-Fornier B, Dang DV, de Haan M, Delius H, Durand P, Fairhead C, Feldmann H, Gaillon L, Kleine K, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome XV. Nature. 1997 May 29;387(6632 Suppl):98-102.
Pubmed: 9169874
Inoue Y, Kimura A: Identification of the structural gene for glyoxalase I from Saccharomyces cerevisiae. J Biol Chem. 1996 Oct 18;271(42):25958-65.
Pubmed: 8824231
Frickel EM, Jemth P, Widersten M, Mannervik B: Yeast glyoxalase I is a monomeric enzyme with two active sites. J Biol Chem. 2001 Jan 19;276(3):1845-9. doi: 10.1074/jbc.M005760200. Epub 2000 Oct 24.
Pubmed: 11050082
Bowman S, Churcher C, Badcock K, Brown D, Chillingworth T, Connor R, Dedman K, Devlin K, Gentles S, Hamlin N, Hunt S, Jagels K, Lye G, Moule S, Odell C, Pearson D, Rajandream M, Rice P, Skelton J, Walsh S, Whitehead S, Barrell B: The nucleotide sequence of Saccharomyces cerevisiae chromosome XIII. Nature. 1997 May 29;387(6632 Suppl):90-3.
Pubmed: 9169872
Bito A, Haider M, Hadler I, Breitenbach M: Identification and phenotypic analysis of two glyoxalase II encoding genes from Saccharomyces cerevisiae, GLO2 and GLO4, and intracellular localization of the corresponding proteins. J Biol Chem. 1997 Aug 22;272(34):21509-19. doi: 10.1074/jbc.272.34.21509.
Pubmed: 9261170
Jacq C, Alt-Morbe J, Andre B, Arnold W, Bahr A, Ballesta JP, Bargues M, Baron L, Becker A, Biteau N, Blocker H, Blugeon C, Boskovic J, Brandt P, Bruckner M, Buitrago MJ, Coster F, Delaveau T, del Rey F, Dujon B, Eide LG, Garcia-Cantalejo JM, Goffeau A, Gomez-Peris A, Zaccaria P, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome IV. Nature. 1997 May 29;387(6632 Suppl):75-8.
Pubmed: 9169867
Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, Dwight SS, Hitz BC, Karra K, Nash RS, Weng S, Wong ED, Lloyd P, Skrzypek MS, Miyasato SR, Simison M, Cherry JM: The reference genome sequence of Saccharomyces cerevisiae: then and now. G3 (Bethesda). 2014 Mar 20;4(3):389-98. doi: 10.1534/g3.113.008995.
Pubmed: 24374639
Lodi T, Ferrero I: Isolation of the DLD gene of Saccharomyces cerevisiae encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase. Mol Gen Genet. 1993 Apr;238(3):315-24. doi: 10.1007/bf00291989.
Pubmed: 8492799
Hu Y, Rolfs A, Bhullar B, Murthy TV, Zhu C, Berger MF, Camargo AA, Kelley F, McCarron S, Jepson D, Richardson A, Raphael J, Moreira D, Taycher E, Zuo D, Mohr S, Kane MF, Williamson J, Simpson A, Bulyk ML, Harlow E, Marsischky G, Kolodner RD, LaBaer J: Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae. Genome Res. 2007 Apr;17(4):536-43. doi: 10.1101/gr.6037607. Epub 2007 Feb 23.
Pubmed: 17322287
Dietrich FS, Mulligan J, Hennessy K, Yelton MA, Allen E, Araujo R, Aviles E, Berno A, Brennan T, Carpenter J, Chen E, Cherry JM, Chung E, Duncan M, Guzman E, Hartzell G, Hunicke-Smith S, Hyman RW, Kayser A, Komp C, Lashkari D, Lew H, Lin D, Mosedale D, Davis RW, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome V. Nature. 1997 May 29;387(6632 Suppl):78-81.
Pubmed: 9169868
Chelstowska A, Liu Z, Jia Y, Amberg D, Butow RA: Signalling between mitochondria and the nucleus regulates the expression of a new D-lactate dehydrogenase activity in yeast. Yeast. 1999 Sep 30;15(13):1377-91. doi: 10.1002/(SICI)1097-0061(19990930)15:13<1377::AID-YEA473>3.0.CO;2-0.
Pubmed: 10509019
McNally T, Purvis IJ, Fothergill-Gilmore LA, Brown AJ: The yeast pyruvate kinase gene does not contain a string of non-preferred codons: revised nucleotide sequence. FEBS Lett. 1989 Apr 24;247(2):312-6. doi: 10.1016/0014-5793(89)81359-6.
Pubmed: 2653861
Burke RL, Tekamp-Olson P, Najarian R: The isolation, characterization, and sequence of the pyruvate kinase gene of Saccharomyces cerevisiae. J Biol Chem. 1983 Feb 25;258(4):2193-201.
Pubmed: 6185493
Aa E, Townsend JP, Adams RI, Nielsen KM, Taylor JW: Population structure and gene evolution in Saccharomyces cerevisiae. FEMS Yeast Res. 2006 Aug;6(5):702-15. doi: 10.1111/j.1567-1364.2006.00059.x.
Pubmed: 16879422
Purnelle B, Goffeau A: Nucleotide sequence analysis of a 40 kb segment on the right arm of yeast chromosome XV reveals 18 open reading frames including a new pyruvate kinase and three homologues to chromosome I genes. Yeast. 1996 Nov;12(14):1475-81. doi: 10.1002/(SICI)1097-0061(199611)12:14%3C1475::AID-YEA32%3E3.0.CO;2-V.
Pubmed: 8948102
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings