Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Cardiolipin Biosynthesis CL(14:1(11Z)/15:0/15:1(11Z)/18:1(9Z))
Saccharomyces cerevisiae
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2016-08-05
Last Updated: 2020-01-07
The biosynthesis of cardiolipin (CL) begins in the endoplasmic reticulum. Glycerone phosphate interacts with an NADPH resulting in the release of NADP and glycerol 3-phosphate. Glycerol 3-phosphate reacts with glycerol-3-phosphate O-acyltransferase resulting in the release of 1-acyl-sn-glycerol 3-phosphate (lysophosphatidic acid or LysoPA). The resulting compound reacts with an acyl-CoA via lysophosphatidate acyltransferase, resulting in the release of a phosphatidic acid (PA or 1,2-diacyl-sn-glycerol 3-phosphate). Phosphatidic acid is transported to the mitochondrial outer membrane. Once in, it gets transported into the mitochondrial inner membrane. The phosphatidic acid reacts with cytidine triphosphate through a phosphatidate cytidyltransferase resulting in the release of a CDP-diacylglycerol (CDP-DG). The resulting compound reacts with a glycerol 3-phosphate through a CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase resulting in the release of cytidine monophosphate and phosphatidylglycerophosphate (PGP). PGP reacts with phosphatidylglycerophosphatase GEP4 resulting in the release of phosphatidylglycerol (PG). PG reacts with a CDP-DG through a cardiolipin synthase resulting in the release of CL and cytidine monophosphate. Cardiolipin remodelling begins with the removal of an acyl chain to form 1-monolysocardiolipin (1-MLCL) via the lipase Cld1p. This is followed by the enzyme Taz1p transferring an acyl chain from a phospholipid (e.g. phosphatidylcholine) to reform cardiolipin.
References
Cardiolipin Biosynthesis CL(14:1(11Z)/15:0/15:1(11Z)/18:1(9Z)) References
Albertyn J, Hohmann S, Thevelein JM, Prior BA: GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol. 1994 Jun;14(6):4135-44. doi: 10.1128/mcb.14.6.4135.
Pubmed: 8196651
Wang HT, Rahaim P, Robbins P, Yocum RR: Cloning, sequence, and disruption of the Saccharomyces diastaticus DAR1 gene encoding a glycerol-3-phosphate dehydrogenase. J Bacteriol. 1994 Nov;176(22):7091-5. doi: 10.1128/jb.176.22.7091-7095.1994.
Pubmed: 7961476
Valadi A, Granath K, Gustafsson L, Adler L: Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production. J Biol Chem. 2004 Sep 17;279(38):39677-85. doi: 10.1074/jbc.M403310200. Epub 2004 Jun 21.
Pubmed: 15210723
Eriksson P, Andre L, Ansell R, Blomberg A, Adler L: Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol Microbiol. 1995 Jul;17(1):95-107. doi: 10.1111/j.1365-2958.1995.mmi_17010095.x.
Pubmed: 7476212
Mannhaupt G, Vetter I, Schwarzlose C, Mitzel S, Feldmann H: Analysis of a 26 kb region on the left arm of yeast chromosome XV. Yeast. 1996 Jan;12(1):67-76. doi: 10.1002/(SICI)1097-0061(199601)12:1%3C67::AID-YEA884%3E3.0.CO;2-F.
Pubmed: 8789261
Dujon B, Albermann K, Aldea M, Alexandraki D, Ansorge W, Arino J, Benes V, Bohn C, Bolotin-Fukuhara M, Bordonne R, Boyer J, Camasses A, Casamayor A, Casas C, Cheret G, Cziepluch C, Daignan-Fornier B, Dang DV, de Haan M, Delius H, Durand P, Fairhead C, Feldmann H, Gaillon L, Kleine K, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome XV. Nature. 1997 May 29;387(6632 Suppl):98-102.
Pubmed: 9169874
Zheng Z, Zou J: The initial step of the glycerolipid pathway: identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae. J Biol Chem. 2001 Nov 9;276(45):41710-6. doi: 10.1074/jbc.M104749200. Epub 2001 Sep 5.
Pubmed: 11544256
Dujon B, Alexandraki D, Andre B, Ansorge W, Baladron V, Ballesta JP, Banrevi A, Bolle PA, Bolotin-Fukuhara M, Bossier P, Bou G, Boyer J, Bultrago MJ, Cheret G, Colleaux L, Dalgnan-Fornler B, del Rey F, Dlon C, Domdey H, Dusterhoft A, Dusterhus S, Entlan KD, Erfle H, Esteban PF, Feldmann H, Fernandes L, Robo GM, Fritz C, Fukuhara H, Gabel C, Gaillon L, Carcia-Cantalejo JM, Garcia-Ramirez JJ, Gent NE, Ghazvini M, Goffeau A, Gonzalez A, Grothues D, Guerreiro P, Hegemann J, Hewitt N, Hilger F, Hollenberg CP, Horaitis O, Indge KJ, Jacquier A, James CM, Jauniaux C, Jimenez A, Keuchel H, Kirchrath L, Kleine K, Kotter P, Legrain P, Liebl S, Louis EJ, Maia e Silva A, Marck C, Monnier AL, Mostl D, Muller S, Obermaier B, Oliver SG, Pallier C, Pascolo S, Pfeiffer F, Philippsen P, Planta RJ, Pohl FM, Pohl TM, Pohlmann R, Portetelle D, Purnelle B, Puzos V, Ramezani Rad M, Rasmussen SW, Remacha M, Revuelta JL, Richard GF, Rieger M, Rodrigues-Pousada C, Rose M, Rupp T, Santos MA, Schwager C, Sensen C, Skala J, Soares H, Sor F, Stegemann J, Tettelin H, Thierry A, Tzermia M, Urrestarazu LA, van Dyck L, Van Vliet-Reedijk JC, Valens M, Vandenbo M, Vilela C, Vissers S, von Wettstein D, Voss H, Wiemann S, Xu G, Zimmermann J, Haasemann M, Becker I, Mewes HW: Complete DNA sequence of yeast chromosome XI. Nature. 1994 Jun 2;369(6479):371-8. doi: 10.1038/369371a0.
Pubmed: 8196765
Engel SR, Dietrich FS, Fisk DG, Binkley G, Balakrishnan R, Costanzo MC, Dwight SS, Hitz BC, Karra K, Nash RS, Weng S, Wong ED, Lloyd P, Skrzypek MS, Miyasato SR, Simison M, Cherry JM: The reference genome sequence of Saccharomyces cerevisiae: then and now. G3 (Bethesda). 2014 Mar 20;4(3):389-98. doi: 10.1534/g3.113.008995.
Pubmed: 24374639
Matsushita M, Nikawa J: Isolation and characterization of a SCT1 gene which can suppress a choline-transport mutant of Saccharomyces cerevisiae. J Biochem. 1995 Feb;117(2):447-51. doi: 10.1093/jb/117.2.447.
Pubmed: 7608137
Skala J, Van Dyck L, Purnelle B, Goffeau A: The sequence of an 8 kb segment on the left arm of chromosome II from Saccharomyces cerevisiae identifies five new open reading frames of unknown functions, two tRNA genes and two transposable elements. Yeast. 1992 Sep;8(9):777-85. doi: 10.1002/yea.320080911.
Pubmed: 1332308
Madania A, Poch O, Tarassov I, Winsor B, Martin R: Analysis of a 22,956 bp region on the right arm of Saccharomyces cerevisiae chromosome XV. Yeast. 1996 Dec;12(15):1563-73. doi: 10.1002/(SICI)1097-0061(199612)12:15%3C1563::AID-YEA44%3E3.0.CO;2-M.
Pubmed: 8972579
Garcia-Cantalejo J, Baladron V, Esteban PF, Santos MA, Bou G, Remacha MA, Revuelta JL, Ballesta JP, Jimenez A, del Rey F: The complete sequence of an 18,002 bp segment of Saccharomyces cerevisiae chromosome XI contains the HBS1, MRP-L20 and PRP16 genes, and six new open reading frames. Yeast. 1994 Feb;10(2):231-45. doi: 10.1002/yea.320100210.
Pubmed: 8203164
Nagiec MM, Wells GB, Lester RL, Dickson RC: A suppressor gene that enables Saccharomyces cerevisiae to grow without making sphingolipids encodes a protein that resembles an Escherichia coli fatty acyltransferase. J Biol Chem. 1993 Oct 15;268(29):22156-63.
Pubmed: 8408076
Jacq C, Alt-Morbe J, Andre B, Arnold W, Bahr A, Ballesta JP, Bargues M, Baron L, Becker A, Biteau N, Blocker H, Blugeon C, Boskovic J, Brandt P, Bruckner M, Buitrago MJ, Coster F, Delaveau T, del Rey F, Dujon B, Eide LG, Garcia-Cantalejo JM, Goffeau A, Gomez-Peris A, Zaccaria P, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome IV. Nature. 1997 May 29;387(6632 Suppl):75-8.
Pubmed: 9169867
Voss H, Benes V, Andrade MA, Valencia A, Rechmann S, Teodoru C, Schwager C, Paces V, Sander C, Ansorge W: DNA sequencing and analysis of 130 kb from yeast chromosome XV. Yeast. 1997 Jun 15;13(7):655-72. doi: 10.1002/(SICI)1097-0061(19970615)13:7<655::AID-YEA120>3.0.CO;2-I.
Pubmed: 9200815
Ayciriex S, Le Guedard M, Camougrand N, Velours G, Schoene M, Leone S, Wattelet-Boyer V, Dupuy JW, Shevchenko A, Schmitter JM, Lessire R, Bessoule JJ, Testet E: YPR139c/LOA1 encodes a novel lysophosphatidic acid acyltransferase associated with lipid droplets and involved in TAG homeostasis. Mol Biol Cell. 2012 Jan;23(2):233-46. doi: 10.1091/mbc.E11-07-0650. Epub 2011 Nov 16.
Pubmed: 22090344
Bussey H, Storms RK, Ahmed A, Albermann K, Allen E, Ansorge W, Araujo R, Aparicio A, Barrell B, Badcock K, Benes V, Botstein D, Bowman S, Bruckner M, Carpenter J, Cherry JM, Chung E, Churcher C, Coster F, Davis K, Davis RW, Dietrich FS, Delius H, DiPaolo T, Hani J, et al.: The nucleotide sequence of Saccharomyces cerevisiae chromosome XVI. Nature. 1997 May 29;387(6632 Suppl):103-5.
Pubmed: 9169875
This pathway was generated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Generated from SMP0002343
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings