Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Plastoquinol-9 Biosynthesis
Arabidopsis thaliana
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2017-02-23
Last Updated: 2019-09-12
Plastoquinol-9 biosynthesis is a pathway that begins in the cytosol and endoplasmic reticulum and ends in the chloroplast by which L-tyrosine and geranylgeranyl diphosphate become plastoquinol-9, ubiquinone analogs and benzoquinone electron carriers. The subpathway that synthesizes homogentisate from L-tryptophan occurs in the cytosol. First, tryptophan aminotransferase uses a pyridoxal 5'-phosphate as a cofactor to convert L-tryptophan into 4-hydroxyphenylpyruvate. Second, 4-hydroxyphenylpyruvate dioxygenase uses Fe2+ as a cofactor to convert 4-hydroxyphenylpyruvate into homogentisate. The subpathway that synthesizes solanesyl diphosphate from geranylgeranyl diphosphate occurs in the endoplasmic reticulum and the single reaction is catalyzed by solanesyl diphosphate which requires a magnesium ion as a cofactor. Solanesyl diphosphate must then be transported out of the endoplasmic reticulum into the cytosol by a yet undiscovered solanesyl diphosphate transporter. The last two reactions are localized to the chloroplast inner membrane (coloured dark green in the image). First, homogentisate solanesyltransferase catalyzes the conversion of solanesyl diphosphate and homogentisate into 2-methyl-6-solanesyl-1,4-benzoquinol, requiring magnesium ion as a cofactor. Second, 2-methyl-6-phytyl-1,4-hydroquinone methyltransferase catalyzes the conversion of 2-methyl-6-solanesyl-1,4-benzoquinol into plastoquinol-9.
References
Plastoquinol-9 Biosynthesis References
Hirooka K, Izumi Y, An CI, Nakazawa Y, Fukusaki E, Kobayashi A: Functional analysis of two solanesyl diphosphate synthases from Arabidopsis thaliana. Biosci Biotechnol Biochem. 2005 Mar;69(3):592-601. doi: 10.1271/bbb.69.592.
Pubmed: 15784989
Jun L, Saiki R, Tatsumi K, Nakagawa T, Kawamukai M: Identification and subcellular localization of two solanesyl diphosphate synthases from Arabidopsis thaliana. Plant Cell Physiol. 2004 Dec;45(12):1882-8. doi: 10.1093/pcp/pch211.
Pubmed: 15653808
Sadre R, Frentzen M, Saeed M, Hawkes T: Catalytic reactions of the homogentisate prenyl transferase involved in plastoquinone-9 biosynthesis. J Biol Chem. 2010 Jun 11;285(24):18191-8. doi: 10.1074/jbc.M110.117929. Epub 2010 Apr 16.
Pubmed: 20400515
He W, Brumos J, Li H, Ji Y, Ke M, Gong X, Zeng Q, Li W, Zhang X, An F, Wen X, Li P, Chu J, Sun X, Yan C, Yan N, Xie DY, Raikhel N, Yang Z, Stepanova AN, Alonso JM, Guo H: A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell. 2011 Nov;23(11):3944-60. doi: 10.1105/tpc.111.089029. Epub 2011 Nov 22.
Pubmed: 22108404
Zhou ZY, Zhang CG, Wu L, Zhang CG, Chai J, Wang M, Jha A, Jia PF, Cui SJ, Yang M, Chen R, Guo GQ: Functional characterization of the CKRC1/TAA1 gene and dissection of hormonal actions in the Arabidopsis root. Plant J. 2011 May;66(3):516-27. doi: 10.1111/j.1365-313X.2011.04509.x. Epub 2011 Mar 1.
Pubmed: 21255165
Theologis A, Ecker JR, Palm CJ, Federspiel NA, Kaul S, White O, Alonso J, Altafi H, Araujo R, Bowman CL, Brooks SY, Buehler E, Chan A, Chao Q, Chen H, Cheuk RF, Chin CW, Chung MK, Conn L, Conway AB, Conway AR, Creasy TH, Dewar K, Dunn P, Etgu P, Feldblyum TV, Feng J, Fong B, Fujii CY, Gill JE, Goldsmith AD, Haas B, Hansen NF, Hughes B, Huizar L, Hunter JL, Jenkins J, Johnson-Hopson C, Khan S, Khaykin E, Kim CJ, Koo HL, Kremenetskaia I, Kurtz DB, Kwan A, Lam B, Langin-Hooper S, Lee A, Lee JM, Lenz CA, Li JH, Li Y, Lin X, Liu SX, Liu ZA, Luros JS, Maiti R, Marziali A, Militscher J, Miranda M, Nguyen M, Nierman WC, Osborne BI, Pai G, Peterson J, Pham PK, Rizzo M, Rooney T, Rowley D, Sakano H, Salzberg SL, Schwartz JR, Shinn P, Southwick AM, Sun H, Tallon LJ, Tambunga G, Toriumi MJ, Town CD, Utterback T, Van Aken S, Vaysberg M, Vysotskaia VS, Walker M, Wu D, Yu G, Fraser CM, Venter JC, Davis RW: Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):816-20. doi: 10.1038/35048500.
Pubmed: 11130712
Garcia I, Rodgers M, Pepin R, Hsieh TF, Matringe M: Characterization and subcellular compartmentation of recombinant 4-hydroxyphenylpyruvate dioxygenase from Arabidopsis in transgenic tobacco. Plant Physiol. 1999 Apr;119(4):1507-16. doi: 10.1104/pp.119.4.1507.
Pubmed: 10198110
Yang C, Pflugrath JW, Camper DL, Foster ML, Pernich DJ, Walsh TA: Structural basis for herbicidal inhibitor selectivity revealed by comparison of crystal structures of plant and mammalian 4-hydroxyphenylpyruvate dioxygenases. Biochemistry. 2004 Aug 17;43(32):10414-23. doi: 10.1021/bi049323o.
Pubmed: 15301540
Fritze IM, Linden L, Freigang J, Auerbach G, Huber R, Steinbacher S: The crystal structures of Zea mays and Arabidopsis 4-hydroxyphenylpyruvate dioxygenase. Plant Physiol. 2004 Apr;134(4):1388-400. doi: 10.1104/pp.103.034082.
Pubmed: 15084729
Hirooka K, Bamba T, Fukusaki E, Kobayashi A: Cloning and kinetic characterization of Arabidopsis thaliana solanesyl diphosphate synthase. Biochem J. 2003 Mar 1;370(Pt 2):679-86. doi: 10.1042/BJ20021311.
Pubmed: 12437513
Venkatesh TV, Karunanandaa B, Free DL, Rottnek JM, Baszis SR, Valentin HE: Identification and characterization of an Arabidopsis homogentisate phytyltransferase paralog. Planta. 2006 May;223(6):1134-44. doi: 10.1007/s00425-005-0180-1. Epub 2006 Jan 12.
Pubmed: 16408209
Tian L, DellaPenna D, Dixon RA: The pds2 mutation is a lesion in the Arabidopsis homogentisate solanesyltransferase gene involved in plastoquinone biosynthesis. Planta. 2007 Sep;226(4):1067-73. doi: 10.1007/s00425-007-0564-5. Epub 2007 Jun 14.
Pubmed: 17569077
Kaneko T, Katoh T, Sato S, Nakamura A, Asamizu E, Tabata S: Structural analysis of Arabidopsis thaliana chromosome 3. II. Sequence features of the 4,251,695 bp regions covered by 90 P1, TAC and BAC clones. DNA Res. 2000 Jun 30;7(3):217-21. doi: 10.1093/dnares/7.3.217.
Pubmed: 10907853
Motohashi R, Ito T, Kobayashi M, Taji T, Nagata N, Asami T, Yoshida S, Yamaguchi-Shinozaki K, Shinozaki K: Functional analysis of the 37 kDa inner envelope membrane polypeptide in chloroplast biogenesis using a Ds-tagged Arabidopsis pale-green mutant. Plant J. 2003 Jun;34(5):719-31.
Pubmed: 12787252
Salanoubat M, Lemcke K, Rieger M, Ansorge W, Unseld M, Fartmann B, Valle G, Blocker H, Perez-Alonso M, Obermaier B, Delseny M, Boutry M, Grivell LA, Mache R, Puigdomenech P, De Simone V, Choisne N, Artiguenave F, Robert C, Brottier P, Wincker P, Cattolico L, Weissenbach J, Saurin W, Quetier F, Schafer M, Muller-Auer S, Gabel C, Fuchs M, Benes V, Wurmbach E, Drzonek H, Erfle H, Jordan N, Bangert S, Wiedelmann R, Kranz H, Voss H, Holland R, Brandt P, Nyakatura G, Vezzi A, D'Angelo M, Pallavicini A, Toppo S, Simionati B, Conrad A, Hornischer K, Kauer G, Lohnert TH, Nordsiek G, Reichelt J, Scharfe M, Schon O, Bargues M, Terol J, Climent J, Navarro P, Collado C, Perez-Perez A, Ottenwalder B, Duchemin D, Cooke R, Laudie M, Berger-Llauro C, Purnelle B, Masuy D, de Haan M, Maarse AC, Alcaraz JP, Cottet A, Casacuberta E, Monfort A, Argiriou A, flores M, Liguori R, Vitale D, Mannhaupt G, Haase D, Schoof H, Rudd S, Zaccaria P, Mewes HW, Mayer KF, Kaul S, Town CD, Koo HL, Tallon LJ, Jenkins J, Rooney T, Rizzo M, Walts A, Utterback T, Fujii CY, Shea TP, Creasy TH, Haas B, Maiti R, Wu D, Peterson J, Van Aken S, Pai G, Militscher J, Sellers P, Gill JE, Feldblyum TV, Preuss D, Lin X, Nierman WC, Salzberg SL, White O, Venter JC, Fraser CM, Kaneko T, Nakamura Y, Sato S, Kato T, Asamizu E, Sasamoto S, Kimura T, Idesawa K, Kawashima K, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakayama S, Nakazaki N, Shinpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S: Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):820-2. doi: 10.1038/35048706.
Pubmed: 11130713
Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD: Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017 Feb;89(4):789-804. doi: 10.1111/tpj.13415. Epub 2017 Feb 10.
Pubmed: 27862469
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings