Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Butanoate Metabolism
Arabidopsis thaliana
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2017-05-16
Last Updated: 2019-09-12
Butanoate or butyrate is the traditional name for the conjugate base of butanoic acid (also known as butyric acid). Butanoate metabolism includes L-glutamate degradation into the signal molecule GABA followed by subsequent reactions to make further products. Glutamate decarboxylase is an enzyme in the cytosol that catalyzes the conversion of L-glutamate into 4-aminobutanoate (GABA). It requires pyridoxal 5'-phosphate as a cofactor. This is followed by GABA permease, belonging to the APC Family of transport proteins, transporting GABA from the cytosol into the mitochondria matrix. Next, gamma-aminobutyrate transaminase degrades gamma-amino butyric acid (GABA) into succinate semialdehyde and uses either pyruvate or glyoxylate as an amino-group acceptor. The pyruvate-dependent activity is reversible while the glyoxylate-dependent activity is irreversible. Afterwards, succinate-semialdehyde dehydrogenase oxidizes succinate semialdehyde into succinate. A predicted succinate semialdehyde transporter in the mitochondria inner membrane is theorized to export succinate semialdehyde from the mitochondrial matrix into the cytosol. There, glyoxylate/succinic semialdehyde reductase catalyzes the reversible conversion of succinate semialdehyde into 4-hydroxybutanoate. Butanoate metabolism in Arabidopsis thaliana also includes reactions involving acetyl-CoA and acetoacetyl-CoA. 3-hydroxybutyryl-CoA dehydrogenase is a predicted enzyme (coloured orange in the image) in the cytosol that is theorized to catalyze the reversible conversion of 3-hydroxybutanoyl-CoA into acetoacetyl-CoA. Acetyl-CoA acetyltransferase then catalyzes the reversible conversion of acetoacetyl-CoA into acetyl-CoA. Then, hydroxymethylglutaryl-CoA synthase condenses acetyl-CoA with acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA. This is followed by a predicted 3-hydroxy-3-methylglutaryl-CoA transporter localized to the mitochondria inner membrane that is theorized to import 3-hydroxy-3-methylglutaryl-CoA into the mitochondrial matrix from the cytosol. Once there, hydroxymethylglutaryl-CoA lyase catalyzes the synthesis of acetoacetate and acetyl-CoA from 3-hydroxy-3-methylglutaryl-CoA.
References
Butanoate Metabolism References
Zik M, Arazi T, Snedden WA, Fromm H: Two isoforms of glutamate decarboxylase in Arabidopsis are regulated by calcium/calmodulin and differ in organ distribution. Plant Mol Biol. 1998 Aug;37(6):967-75.
Pubmed: 9700069
Clark SM, Di Leo R, Dhanoa PK, Van Cauwenberghe OR, Mullen RT, Shelp BJ: Biochemical characterization, mitochondrial localization, expression, and potential functions for an Arabidopsis gamma-aminobutyrate transaminase that utilizes both pyruvate and glyoxylate. J Exp Bot. 2009;60(6):1743-57. doi: 10.1093/jxb/erp044. Epub 2009 Mar 5.
Pubmed: 19264755
Michaeli S, Fait A, Lagor K, Nunes-Nesi A, Grillich N, Yellin A, Bar D, Khan M, Fernie AR, Turano FJ, Fromm H: A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism. Plant J. 2011 Aug;67(3):485-98. doi: 10.1111/j.1365-313X.2011.04612.x. Epub 2011 May 31.
Pubmed: 21501262
Bouche N, Fait A, Zik M, Fromm H: The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis. Plant Mol Biol. 2004 May;55(3):315-25. doi: 10.1007/s11103-004-0650-z.
Pubmed: 15604684
Arazi T, Baum G, Snedden WA, Shelp BJ, Fromm H: Molecular and biochemical analysis of calmodulin interactions with the calmodulin-binding domain of plant glutamate decarboxylase. Plant Physiol. 1995 Jun;108(2):551-61. doi: 10.1104/pp.108.2.551.
Pubmed: 7610159
Sato S, Kotani H, Nakamura Y, Kaneko T, Asamizu E, Fukami M, Miyajima N, Tabata S: Structural analysis of Arabidopsis thaliana chromosome 5. I. Sequence features of the 1.6 Mb regions covered by twenty physically assigned P1 clones. DNA Res. 1997 Jun 30;4(3):215-30. doi: 10.1093/dnares/4.3.215.
Pubmed: 9330910
Dundar E, Bush DR: BAT1, a bidirectional amino acid transporter in Arabidopsis. Planta. 2009 Apr;229(5):1047-56. doi: 10.1007/s00425-009-0892-8. Epub 2009 Feb 8.
Pubmed: 19199104
Lin X, Kaul S, Rounsley S, Shea TP, Benito MI, Town CD, Fujii CY, Mason T, Bowman CL, Barnstead M, Feldblyum TV, Buell CR, Ketchum KA, Lee J, Ronning CM, Koo HL, Moffat KS, Cronin LA, Shen M, Pai G, Van Aken S, Umayam L, Tallon LJ, Gill JE, Adams MD, Carrera AJ, Creasy TH, Goodman HM, Somerville CR, Copenhaver GP, Preuss D, Nierman WC, White O, Eisen JA, Salzberg SL, Fraser CM, Venter JC: Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature. 1999 Dec 16;402(6763):761-8. doi: 10.1038/45471.
Pubmed: 10617197
Palanivelu R, Brass L, Edlund AF, Preuss D: Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell. 2003 Jul 11;114(1):47-59. doi: 10.1016/s0092-8674(03)00479-3.
Pubmed: 12859897
Ludewig F, Huser A, Fromm H, Beauclair L, Bouche N: Mutants of GABA transaminase (POP2) suppress the severe phenotype of succinic semialdehyde dehydrogenase (ssadh) mutants in Arabidopsis. PLoS One. 2008;3(10):e3383. doi: 10.1371/journal.pone.0003383. Epub 2008 Oct 10.
Pubmed: 18846220
Kaneko T, Katoh T, Sato S, Nakamura A, Asamizu E, Tabata S: Structural analysis of Arabidopsis thaliana chromosome 3. II. Sequence features of the 4,251,695 bp regions covered by 90 P1, TAC and BAC clones. DNA Res. 2000 Jun 30;7(3):217-21. doi: 10.1093/dnares/7.3.217.
Pubmed: 10907853
Busch KB, Fromm H: Plant succinic semialdehyde dehydrogenase. Cloning, purification, localization in mitochondria, and regulation by adenine nucleotides. Plant Physiol. 1999 Oct;121(2):589-97. doi: 10.1104/pp.121.2.589.
Pubmed: 10517851
Theologis A, Ecker JR, Palm CJ, Federspiel NA, Kaul S, White O, Alonso J, Altafi H, Araujo R, Bowman CL, Brooks SY, Buehler E, Chan A, Chao Q, Chen H, Cheuk RF, Chin CW, Chung MK, Conn L, Conway AB, Conway AR, Creasy TH, Dewar K, Dunn P, Etgu P, Feldblyum TV, Feng J, Fong B, Fujii CY, Gill JE, Goldsmith AD, Haas B, Hansen NF, Hughes B, Huizar L, Hunter JL, Jenkins J, Johnson-Hopson C, Khan S, Khaykin E, Kim CJ, Koo HL, Kremenetskaia I, Kurtz DB, Kwan A, Lam B, Langin-Hooper S, Lee A, Lee JM, Lenz CA, Li JH, Li Y, Lin X, Liu SX, Liu ZA, Luros JS, Maiti R, Marziali A, Militscher J, Miranda M, Nguyen M, Nierman WC, Osborne BI, Pai G, Peterson J, Pham PK, Rizzo M, Rooney T, Rowley D, Sakano H, Salzberg SL, Schwartz JR, Shinn P, Southwick AM, Sun H, Tallon LJ, Tambunga G, Toriumi MJ, Town CD, Utterback T, Van Aken S, Vaysberg M, Vysotskaia VS, Walker M, Wu D, Yu G, Fraser CM, Venter JC, Davis RW: Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):816-20. doi: 10.1038/35048500.
Pubmed: 11130712
Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD: Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017 Feb;89(4):789-804. doi: 10.1111/tpj.13415. Epub 2017 Feb 10.
Pubmed: 27862469
Breitkreuz KE, Allan WL, Van Cauwenberghe OR, Jakobs C, Talibi D, Andre B, Shelp BJ: A novel gamma-hydroxybutyrate dehydrogenase: identification and expression of an Arabidopsis cDNA and potential role under oxygen deficiency. J Biol Chem. 2003 Oct 17;278(42):41552-6. doi: 10.1074/jbc.M305717200. Epub 2003 Jul 25.
Pubmed: 12882961
Sato S, Nakamura Y, Kaneko T, Katoh T, Asamizu E, Tabata S: Structural analysis of Arabidopsis thaliana chromosome 3. I. Sequence features of the regions of 4,504,864 bp covered by sixty P1 and TAC clones. DNA Res. 2000 Apr 28;7(2):131-5. doi: 10.1093/dnares/7.2.131.
Pubmed: 10819329
Sato S, Nakamura Y, Kaneko T, Katoh T, Asamizu E, Kotani H, Tabata S: Structural analysis of Arabidopsis thaliana chromosome 5. X. Sequence features of the regions of 3,076,755 bp covered by sixty P1 and TAC clones. DNA Res. 2000 Feb 28;7(1):31-63. doi: 10.1093/dnares/7.1.31.
Pubmed: 10718197
Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ, Southwick AM, Wu HC, Kim C, Nguyen M, Pham P, Cheuk R, Karlin-Newmann G, Liu SX, Lam B, Sakano H, Wu T, Yu G, Miranda M, Quach HL, Tripp M, Chang CH, Lee JM, Toriumi M, Chan MM, Tang CC, Onodera CS, Deng JM, Akiyama K, Ansari Y, Arakawa T, Banh J, Banno F, Bowser L, Brooks S, Carninci P, Chao Q, Choy N, Enju A, Goldsmith AD, Gurjal M, Hansen NF, Hayashizaki Y, Johnson-Hopson C, Hsuan VW, Iida K, Karnes M, Khan S, Koesema E, Ishida J, Jiang PX, Jones T, Kawai J, Kamiya A, Meyers C, Nakajima M, Narusaka M, Seki M, Sakurai T, Satou M, Tamse R, Vaysberg M, Wallender EK, Wong C, Yamamura Y, Yuan S, Shinozaki K, Davis RW, Theologis A, Ecker JR: Empirical analysis of transcriptional activity in the Arabidopsis genome. Science. 2003 Oct 31;302(5646):842-6. doi: 10.1126/science.1088305.
Pubmed: 14593172
Montamat F, Guilloton M, Karst F, Delrot S: Isolation and characterization of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-methylglutaryl-coenzyme A synthase. Gene. 1995 Dec 29;167(1-2):197-201. doi: 10.1016/0378-1119(95)00642-7.
Pubmed: 8566777
Mayer K, Schuller C, Wambutt R, Murphy G, Volckaert G, Pohl T, Dusterhoft A, Stiekema W, Entian KD, Terryn N, Harris B, Ansorge W, Brandt P, Grivell L, Rieger M, Weichselgartner M, de Simone V, Obermaier B, Mache R, Muller M, Kreis M, Delseny M, Puigdomenech P, Watson M, Schmidtheini T, Reichert B, Portatelle D, Perez-Alonso M, Boutry M, Bancroft I, Vos P, Hoheisel J, Zimmermann W, Wedler H, Ridley P, Langham SA, McCullagh B, Bilham L, Robben J, Van der Schueren J, Grymonprez B, Chuang YJ, Vandenbussche F, Braeken M, Weltjens I, Voet M, Bastiaens I, Aert R, Defoor E, Weitzenegger T, Bothe G, Ramsperger U, Hilbert H, Braun M, Holzer E, Brandt A, Peters S, van Staveren M, Dirske W, Mooijman P, Klein Lankhorst R, Rose M, Hauf J, Kotter P, Berneiser S, Hempel S, Feldpausch M, Lamberth S, Van den Daele H, De Keyser A, Buysshaert C, Gielen J, Villarroel R, De Clercq R, Van Montagu M, Rogers J, Cronin A, Quail M, Bray-Allen S, Clark L, Doggett J, Hall S, Kay M, Lennard N, McLay K, Mayes R, Pettett A, Rajandream MA, Lyne M, Benes V, Rechmann S, Borkova D, Blocker H, Scharfe M, Grimm M, Lohnert TH, Dose S, de Haan M, Maarse A, Schafer M, Muller-Auer S, Gabel C, Fuchs M, Fartmann B, Granderath K, Dauner D, Herzl A, Neumann S, Argiriou A, Vitale D, Liguori R, Piravandi E, Massenet O, Quigley F, Clabauld G, Mundlein A, Felber R, Schnabl S, Hiller R, Schmidt W, Lecharny A, Aubourg S, Chefdor F, Cooke R, Berger C, Montfort A, Casacuberta E, Gibbons T, Weber N, Vandenbol M, Bargues M, Terol J, Torres A, Perez-Perez A, Purnelle B, Bent E, Johnson S, Tacon D, Jesse T, Heijnen L, Schwarz S, Scholler P, Heber S, Francs P, Bielke C, Frishman D, Haase D, Lemcke K, Mewes HW, Stocker S, Zaccaria P, Bevan M, Wilson RK, de la Bastide M, Habermann K, Parnell L, Dedhia N, Gnoj L, Schutz K, Huang E, Spiegel L, Sehkon M, Murray J, Sheet P, Cordes M, Abu-Threideh J, Stoneking T, Kalicki J, Graves T, Harmon G, Edwards J, Latreille P, Courtney L, Cloud J, Abbott A, Scott K, Johnson D, Minx P, Bentley D, Fulton B, Miller N, Greco T, Kemp K, Kramer J, Fulton L, Mardis E, Dante M, Pepin K, Hillier L, Nelson J, Spieth J, Ryan E, Andrews S, Geisel C, Layman D, Du H, Ali J, Berghoff A, Jones K, Drone K, Cotton M, Joshu C, Antonoiu B, Zidanic M, Strong C, Sun H, Lamar B, Yordan C, Ma P, Zhong J, Preston R, Vil D, Shekher M, Matero A, Shah R, Swaby IK, O'Shaughnessy A, Rodriguez M, Hoffmann J, Till S, Granat S, Shohdy N, Hasegawa A, Hameed A, Lodhi M, Johnson A, Chen E, Marra M, Martienssen R, McCombie WR: Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature. 1999 Dec 16;402(6763):769-77. doi: 10.1038/47134.
Pubmed: 10617198
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings