Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Warburg Effect
Rattus norvegicus
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2018-08-10
Last Updated: 2019-08-16
The Warburg Effect refers to the phenomenon that occurs in most cancer cells where instead of generating energy with a low rate of glycolysis followed by oxidizing pyruvate via the Krebs cycle in the mitochondria, the pyruvate from a high rate of glycolysis undergoes lactic acid fermentation in the cytosol. As the Krebs cycle is an aerobic process, in normal cells lactate production is reserved for anaerobic conditions. However, cancer cells preferentially utilize glucose for lactate production via this “aerobic glycolysis”, even when oxygen is plentiful. The Warburg Effect is thought to be the result of mutations to oncogenes and tumour suppressor genes. It may be an adaptation to low-oxygen environments within tumors, the result of cancer genes shutting down the mitochondria, or a mechanism to aid cell proliferation via increased glycolysis. The Warburg Effect involves numerous pathways, including growth factor stimulation, transcriptional activation, and glycolysis promotion.
References
Warburg Effect References
Thelen AP, Wilson JE: Complete amino acid sequence of the type II isozyme of rat hexokinase, deduced from the cloned cDNA: comparison with a hexokinase from novikoff ascites tumor. Arch Biochem Biophys. 1991 May 1;286(2):645-51. doi: 10.1016/0003-9861(91)90094-y.
Pubmed: 1897984
Ichihara J, Shinohara Y, Kogure K, Terada H: Nucleotide sequence of the 5'-flanking region of the rat type II hexokinase gene. Biochim Biophys Acta. 1995 Feb 21;1260(3):365-8. doi: 10.1016/0167-4781(94)00226-s.
Pubmed: 7873617
Mathupala SP, Rempel A, Pedersen PL: Glucose catabolism in cancer cells. Isolation, sequence, and activity of the promoter for type II hexokinase. J Biol Chem. 1995 Jul 14;270(28):16918-25. doi: 10.1074/jbc.270.28.16918.
Pubmed: 7622509
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Maurya DK, Sundaram CS, Bhargava P: Proteome profile of the mature rat olfactory bulb. Proteomics. 2009 May;9(9):2593-9. doi: 10.1002/pmic.200800664.
Pubmed: 19343716
Lundby A, Secher A, Lage K, Nordsborg NB, Dmytriyev A, Lundby C, Olsen JV: Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun. 2012 Jun 6;3:876. doi: 10.1038/ncomms1871.
Pubmed: 22673903
Hotta K, Nakajima H, Yamasaki T, Hamaguchi T, Kuwajima M, Noguchi T, Tanaka T, Kono N, Tarui S: Rat-liver-type phosphofructokinase mRNA. Structure, tissue distribution and regulation. Eur J Biochem. 1991 Dec 5;202(2):293-8. doi: 10.1111/j.1432-1033.1991.tb16375.x.
Pubmed: 1836995
Tsutsumi K, Mukai T, Tsutsumi R, Mori M, Daimon M, Tanaka T, Yatsuki H, Hori K, Ishikawa K: Nucleotide sequence of rat liver aldolase B messenger RNA. J Biol Chem. 1984 Dec 10;259(23):14572-5.
Pubmed: 6094564
Tsutsumi K, Mukai T, Tsutsumi R, Hidaka S, Arai Y, Hori K, Ishikawa K: Structure and genomic organization of the rat aldolase B gene. J Mol Biol. 1985 Jan 20;181(2):153-60. doi: 10.1016/0022-2836(85)90081-6.
Pubmed: 2580098
Tsutsumi K, Mukai T, Hidaka S, Miyahara H, Tsutsumi R, Tanaka T, Hori K, Ishikawa K: Rat aldolase isozyme gene. J Biol Chem. 1983 May 25;258(10):6537-42.
Pubmed: 6304044
Fort P, Marty L, Piechaczyk M, el Sabrouty S, Dani C, Jeanteur P, Blanchard JM: Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res. 1985 Mar 11;13(5):1431-42. doi: 10.1093/nar/13.5.1431.
Pubmed: 2987824
Tso JY, Sun XH, Kao TH, Reece KS, Wu R: Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene. Nucleic Acids Res. 1985 Apr 11;13(7):2485-502. doi: 10.1093/nar/13.7.2485.
Pubmed: 2987855
Tajima H, Tsuchiya K, Yamada M, Kondo K, Katsube N, Ishitani R: Over-expression of GAPDH induces apoptosis in COS-7 cells transfected with cloned GAPDH cDNAs. Neuroreport. 1999 Jul 13;10(10):2029-33. doi: 10.1097/00001756-199907130-00007.
Pubmed: 10424669
Ciccarese S, Tommasi S, Vonghia G: Cloning and cDNA sequence of the rat X-chromosome linked phosphoglycerate kinase. Biochem Biophys Res Commun. 1989 Dec 29;165(3):1337-44. doi: 10.1016/0006-291x(89)92750-2.
Pubmed: 2610697
Castella-Escola J, Montoliu L, Pons G, Puigdomenech P, Cohen-Solal M, Carreras J, Rigau J, Climent F: Sequence of rat skeletal muscle phosphoglycerate mutase cDNA. Biochem Biophys Res Commun. 1989 Dec 29;165(3):1345-51. doi: 10.1016/0006-291x(89)92751-4.
Pubmed: 2558656
Ruiz-Lozano P, de Lecea L, Buesa C, Perez de la Osa P, LePage D, Gualberto A, Walsh K, Pons G: The gene encoding rat phosphoglycerate mutase subunit M: cloning and promoter analysis in skeletal muscle cells. Gene. 1994 Sep 30;147(2):243-8. doi: 10.1016/0378-1119(94)90074-4.
Pubmed: 7926808
Sakimura K, Kushiya E, Obinata M, Takahashi Y: Molecular cloning and the nucleotide sequence of cDNA to mRNA for non-neuronal enolase (alpha alpha enolase) of rat brain and liver. Nucleic Acids Res. 1985 Jun 25;13(12):4365-78. doi: 10.1093/nar/13.12.4365.
Pubmed: 2989793
Nakajima K, Hamanoue M, Takemoto N, Hattori T, Kato K, Kohsaka S: Plasminogen binds specifically to alpha-enolase on rat neuronal plasma membrane. J Neurochem. 1994 Dec;63(6):2048-57. doi: 10.1046/j.1471-4159.1994.63062048.x.
Pubmed: 7964722
Noguchi T, Yamada K, Inoue H, Matsuda T, Tanaka T: The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. J Biol Chem. 1987 Oct 15;262(29):14366-71.
Pubmed: 3654663
Inoue H, Noguchi T, Tanaka T: Complete amino acid sequence of rat L-type pyruvate kinase deduced from the cDNA sequence. Eur J Biochem. 1986 Jan 15;154(2):465-9. doi: 10.1111/j.1432-1033.1986.tb09420.x.
Pubmed: 3002799
Lone YC, Simon MP, Kahn A, Marie J: Complete nucleotide and deduced amino acid sequences of rat L-type pyruvate kinase. FEBS Lett. 1986 Jan 20;195(1-2):97-100. doi: 10.1016/0014-5793(86)80138-7.
Pubmed: 3080337
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000654
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings