
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Intracellular Signalling Through LHCGR Receptor and Luteinizing Hormone/Choriogonadotropin
Rattus norvegicus
Category:
Protein Pathway
Sub-Categories:
Protein/Peptide Hormone-Mediated
Kinase Signaling
Gene Regulatory
Developmental Signaling
Cellular Response
Protein/Peptide Hormone-Mediated
Created: 2018-08-31
Last Updated: 2019-09-15
The luteinizing hormone/choriogonadotropin receptor (LHCGR) is a transmembrane G protein-coupled receptor located most prominently in the ovary and testis but also found in organs such as the uterus, breasts, prostate, and seminal vesicles. As its name suggests, the receptor is activated by both luteinizing hormone (LH) and chorionic gonadotropins (e.g. hCG) and plays an important role in the regulation of reproduction. In the ovaries, activation of LHCGR by follicle-stimulating hormone (FSH) leads to follicular maturation and ovulation. In the testis, LHCGR activation is essential for testosterone production and spermatogenesis. The LHCGR receptor activates G(s) proteins which leads to the activation of adenylyl cyclase and produces the secondary messenger cAMP. cAMP then activates protein kinase A (PKA) which phosphorylates downstream effectors that lead to a specific cellular response. Specifically, LHCGR upregulates the mitochondrial enzyme P450scc (cholesterol side-chain cleavage enzyme) which increases the production of steroid hormones such as testosterone and estrogen.
References
Intracellular Signalling Through LHCGR Receptor and Luteinizing Hormone/Choriogonadotropin References
McFarland KC, Sprengel R, Phillips HS, Kohler M, Rosemblit N, Nikolics K, Segaloff DL, Seeburg PH: Lutropin-choriogonadotropin receptor: an unusual member of the G protein-coupled receptor family. Science. 1989 Aug 4;245(4917):494-9. doi: 10.1126/science.2502842.
Pubmed: 2502842
Aatsinki JT, Pietila EM, Lakkakorpi JT, Rajaniemi HJ: Expression of the LH/CG receptor gene in rat ovarian tissue is regulated by an extensive alternative splicing of the primary transcript. Mol Cell Endocrinol. 1992 Mar;84(1-2):127-35. doi: 10.1016/0303-7207(92)90079-l.
Pubmed: 1353463
Koo YB, Ji I, Slaughter RG, Ji TH: Structure of the luteinizing hormone receptor gene and multiple exons of the coding sequence. Endocrinology. 1991 May;128(5):2297-308. doi: 10.1210/endo-128-5-2297.
Pubmed: 2019252
Itoh H, Kozasa T, Nagata S, Nakamura S, Katada T, Ui M, Iwai S, Ohtsuka E, Kawasaki H, Suzuki K, et al.: Molecular cloning and sequence determination of cDNAs for alpha subunits of the guanine nucleotide-binding proteins Gs, Gi, and Go from rat brain. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3776-80. doi: 10.1073/pnas.83.11.3776.
Pubmed: 3086867
Jones DT, Reed RR: Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J Biol Chem. 1987 Oct 15;262(29):14241-9.
Pubmed: 2820999
Crawford JA, Mutchler KJ, Sullivan BE, Lanigan TM, Clark MS, Russo AF: Neural expression of a novel alternatively spliced and polyadenylated Gs alpha transcript. J Biol Chem. 1993 May 5;268(13):9879-85.
Pubmed: 8486667
Watson JB, Coulter PM 2nd, Margulies JE, de Lecea L, Danielson PE, Erlander MG, Sutcliffe JG: G-protein gamma 7 subunit is selectively expressed in medium-sized neurons and dendrites of the rat neostriatum. J Neurosci Res. 1994 Sep 1;39(1):108-16. doi: 10.1002/jnr.490390113.
Pubmed: 7807587
Wang XB, Funada M, Imai Y, Revay RS, Ujike H, Vandenbergh DJ, Uhl GR: rGbeta1: a psychostimulant-regulated gene essential for establishing cocaine sensitization. J Neurosci. 1997 Aug 1;17(15):5993-6000.
Pubmed: 9221795
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Lundby A, Secher A, Lage K, Nordsborg NB, Dmytriyev A, Lundby C, Olsen JV: Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun. 2012 Jun 6;3:876. doi: 10.1038/ncomms1871.
Pubmed: 22673903
Feinstein PG, Schrader KA, Bakalyar HA, Tang WJ, Krupinski J, Gilman AG, Reed RR: Molecular cloning and characterization of a Ca2+/calmodulin-insensitive adenylyl cyclase from rat brain. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10173-7. doi: 10.1073/pnas.88.22.10173.
Pubmed: 1719547
Chen J, DeVivo M, Dingus J, Harry A, Li J, Sui J, Carty DJ, Blank JL, Exton JH, Stoffel RH, et al.: A region of adenylyl cyclase 2 critical for regulation by G protein beta gamma subunits. Science. 1995 May 26;268(5214):1166-9. doi: 10.1126/science.7761832.
Pubmed: 7761832
Boran AD, Chen Y, Iyengar R: Identification of new Gbetagamma interaction sites in adenylyl cyclase 2. Cell Signal. 2011 Sep;23(9):1489-95. doi: 10.1016/j.cellsig.2011.05.002. Epub 2011 May 8.
Pubmed: 21596131
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000338
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings