Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Muscle/Heart Contraction
Rattus norvegicus
Category:
Metabolite Pathway
Sub-Category:
Physiological
Created: 2018-09-10
Last Updated: 2019-09-13
Tubular striated muscle cells (i.e. skeletal and cardiac myocytes) are composed of bundles of rod-like myofibrils. Each individual myofibril consists of many repeating units called sarcomeres. These functional units, in turn, are composed of many alternating actin and mysoin protein filaments that produce muscle contraction. The muscle contraction process is initiated when the muscle cell is depolarized enough for an action potential to occur. When acetylcholine is released from the motor neuron axon terminals that are adjacent to the muscle cells, it binds to receptors on the sarcolemma (muscle cell membrane), causing nicotinic acetylcholine receptors to be activated and the sodium/potassium channels to be opened. The fast influx of sodium and slow efflux of potassium through the channel causes depolarization. The resulting action potential that is generated travels along the sarcolemma and down the T-tubule, activating the L-type voltage-dependent calcium channels on the sarcolemma and ryanodine receptors on the sarcoplasmic reticulum. When these are activated, it triggers the release of calcium ions from the sarcoplasmic reticulum into the cytosol. From there, the calcium ions bind to the protein troponin which displaces the tropomysoin filaments from the binding sites on the actin filaments. This allows for myosin filaments to be able to bind to the actin. According to the Sliding Filament Theory, the myosin heads that have an ADP and phosphate attached binds to the actin, forming a cross-bridge. Once attached, the myosin performs a powerstroke which slides the actin filaments together. The ATP and phosphate are dislodged during this process. However, ATP now binds to the myosin head, which causes the myosin to detach from the actin. The cycle repeats once the attached ATP dissociates into ADP and phosphate, and the myosin performs another powerstroke, bringing the actin filaments even closer together. Numerous actin filaments being pulled together simultaneously across many muscles cells triggers muscle contraction.
References
Muscle/Heart Contraction References
Suh PG, Ryu SH, Moon KH, Suh HW, Rhee SG: Cloning and sequence of multiple forms of phospholipase C. Cell. 1988 Jul 15;54(2):161-9. doi: 10.1016/0092-8674(88)90548-x.
Pubmed: 3390863
Jhon DY, Lee HH, Park D, Lee CW, Lee KH, Yoo OJ, Rhee SG: Cloning, sequencing, purification, and Gq-dependent activation of phospholipase C-beta 3. J Biol Chem. 1993 Mar 25;268(9):6654-61.
Pubmed: 8454637
Lundby A, Secher A, Lage K, Nordsborg NB, Dmytriyev A, Lundby C, Olsen JV: Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun. 2012 Jun 6;3:876. doi: 10.1038/ncomms1871.
Pubmed: 22673903
Gunteski-Hamblin AM, Greeb J, Shull GE: A novel Ca2+ pump expressed in brain, kidney, and stomach is encoded by an alternative transcript of the slow-twitch muscle sarcoplasmic reticulum Ca-ATPase gene. Identification of cDNAs encoding Ca2+ and other cation-transporting ATPases using an oligonucleotide probe derived from the ATP-binding site. J Biol Chem. 1988 Oct 15;263(29):15032-40.
Pubmed: 2844797
Lompre AM, de la Bastie D, Boheler KR, Schwartz K: Characterization and expression of the rat heart sarcoplasmic reticulum Ca2+-ATPase mRNA. FEBS Lett. 1989 May 22;249(1):35-41. doi: 10.1016/0014-5793(89)80010-9.
Pubmed: 2542094
Viner RI, Ferrington DA, Williams TD, Bigelow DJ, Schoneich C: Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle. Biochem J. 1999 Jun 15;340 ( Pt 3):657-69.
Pubmed: 10359649
Wischmeyer E, Lentes KU, Karschin A: Physiological and molecular characterization of an IRK-type inward rectifier K+ channel in a tumour mast cell line. Pflugers Arch. 1995 Apr;429(6):809-19. doi: 10.1007/bf00374805.
Pubmed: 7603835
Rae JL, Shepard AR: Inwardly rectifying potassium channels in lens epithelium are from the IRK1 (Kir 2.1) family. Exp Eye Res. 1998 Mar;66(3):347-59. doi: 10.1006/exer.1997.0432.
Pubmed: 9533862
Leonoudakis D, Conti LR, Radeke CM, McGuire LM, Vandenberg CA: A multiprotein trafficking complex composed of SAP97, CASK, Veli, and Mint1 is associated with inward rectifier Kir2 potassium channels. J Biol Chem. 2004 Apr 30;279(18):19051-63. doi: 10.1074/jbc.M400284200. Epub 2004 Feb 11.
Pubmed: 14960569
Falk T, Meyerhof W, Corrette BJ, Schafer J, Bauer CK, Schwarz JR, Richter D: Cloning, functional expression and mRNA distribution of an inwardly rectifying potassium channel protein. FEBS Lett. 1995 Jun 26;367(2):127-31. doi: 10.1016/0014-5793(95)00527-g.
Pubmed: 7796907
Bond CT, Pessia M, Xia XM, Lagrutta A, Kavanaugh MP, Adelman JP: Cloning and expression of a family of inward rectifier potassium channels. Receptors Channels. 1994;2(3):183-91.
Pubmed: 7874445
Bredt DS, Wang TL, Cohen NA, Guggino WB, Snyder SH: Cloning and expression of two brain-specific inwardly rectifying potassium channels. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6753-7. doi: 10.1073/pnas.92.15.6753.
Pubmed: 7624316
Dascal N, Schreibmayer W, Lim NF, Wang W, Chavkin C, DiMagno L, Labarca C, Kieffer BL, Gaveriaux-Ruff C, Trollinger D, et al.: Atrial G protein-activated K+ channel: expression cloning and molecular properties. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10235-9. doi: 10.1073/pnas.90.21.10235.
Pubmed: 8234283
Kubo Y, Reuveny E, Slesinger PA, Jan YN, Jan LY: Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature. 1993 Aug 26;364(6440):802-6. doi: 10.1038/364802a0.
Pubmed: 8355805
DePaoli AM, Bell GI, Stoffel M: G protein-activated inwardly rectifying potassium channel (GIRK1/KGA) mRNA in adult rat heart and brain by in situ hybridization histochemistry. Mol Cell Neurosci. 1994 Dec;5(6):515-22. doi: 10.1006/mcne.1994.1063.
Pubmed: 7704424
Ashford ML, Bond CT, Blair TA, Adelman JP: Cloning and functional expression of a rat heart KATP channel. Nature. 1994 Aug 11;370(6489):456-9. doi: 10.1038/370456a0.
Pubmed: 8047164
Ashford ML, Bond CT, Blair TA, Adelman JP: Cloning and functional expression of a rat heart KATP channel. Nature. 1995 Dec 21-28;378(6559):792. doi: 10.1038/378792a0.
Pubmed: 8524415
Krapivinsky G, Gordon EA, Wickman K, Velimirovic B, Krapivinsky L, Clapham DE: The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins. Nature. 1995 Mar 9;374(6518):135-41. doi: 10.1038/374135a0.
Pubmed: 7877685
Dixon JE, Shi W, Wang HS, McDonald C, Yu H, Wymore RS, Cohen IS, McKinnon D: Role of the Kv4.3 K+ channel in ventricular muscle. A molecular correlate for the transient outward current. Circ Res. 1996 Oct;79(4):659-68. doi: 10.1161/01.res.79.4.659.
Pubmed: 8831489
Serodio P, Vega-Saenz de Miera E, Rudy B: Cloning of a novel component of A-type K+ channels operating at subthreshold potentials with unique expression in heart and brain. J Neurophysiol. 1996 May;75(5):2174-9. doi: 10.1152/jn.1996.75.5.2174.
Pubmed: 8734615
Tsaur ML, Chou CC, Shih YH, Wang HL: Cloning, expression and CNS distribution of Kv4.3, an A-type K+ channel alpha subunit. FEBS Lett. 1997 Jan 3;400(2):215-20. doi: 10.1016/s0014-5793(96)01388-9.
Pubmed: 9001401
Ohya S, Morohashi Y, Muraki K, Tomita T, Watanabe M, Iwatsubo T, Imaizumi Y: Molecular cloning and expression of the novel splice variants of K(+) channel-interacting protein 2. Biochem Biophys Res Commun. 2001 Mar 23;282(1):96-102. doi: 10.1006/bbrc.2001.4558.
Pubmed: 11263977
Takimoto K, Yang EK, Conforti L: Palmitoylation of KChIP splicing variants is required for efficient cell surface expression of Kv4.3 channels. J Biol Chem. 2002 Jul 26;277(30):26904-11. doi: 10.1074/jbc.M203651200. Epub 2002 May 10.
Pubmed: 12006572
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Swanson R, Marshall J, Smith JS, Williams JB, Boyle MB, Folander K, Luneau CJ, Antanavage J, Oliva C, Buhrow SA, et al.: Cloning and expression of cDNA and genomic clones encoding three delayed rectifier potassium channels in rat brain. Neuron. 1990 Jun;4(6):929-39. doi: 10.1016/0896-6273(90)90146-7.
Pubmed: 2361015
Roberds SL, Tamkun MM: Cloning and tissue-specific expression of five voltage-gated potassium channel cDNAs expressed in rat heart. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1798-802. doi: 10.1073/pnas.88.5.1798.
Pubmed: 1705709
Mori Y, Matsubara H, Folco E, Siegel A, Koren G: The transcription of a mammalian voltage-gated potassium channel is regulated by cAMP in a cell-specific manner. J Biol Chem. 1993 Dec 15;268(35):26482-93.
Pubmed: 8253777
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000588
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings