Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
LPS and Citrate Signaling and Inflammation
Rattus norvegicus
Category:
Protein Pathway
Sub-Categories:
Immunological
Pathogen-Activated Signaling
Cellular Response
Created: 2018-09-20
Last Updated: 2019-09-15
Lipopolysaccharides (LPS) are essential to the structure and function of the Gram-negative bacterial outer membrane, providing both stability (via an increased negative charge) and protection. Also referred to as lipoglycans and endotoxins, these large molecules are potent activators of animal immune systems. Following detection by macrophage and dendritic cell TLR4 (Toll-like receptor 4), signalling cascades activate transcription factors such as NF-κB which lead to the production of pro-inflammatory molecules (e.g. cytokines, prostaglandins, ROS, and nitric oxide). Inflammation, the body's response to infection and injury, is vital for the elimination of harmful irritants and the initiation of tissue repair. The production of citrate is upregulated in LPS-activated dendritic cells (via upregulation of glycolysis) in order to increase the rate of fatty acid biosynthesis. Fatty acids are vital for cytokine production and for extending the cell membrane in order to allow for more antigens to be presented. A mitochondrial citrate transport protein exports citrate into the cytoplasm where it is catabolized into acetyl-CoA and oxaloacetate. Acetyl-CoA is incorporated into phospholipids and used to acetylate proteins. Oxaloacetate can be broken down further into NADPH which is required to synthesize reactive oxygen species (ROS) and nitric oxide (NO).
References
LPS and Citrate Signaling and Inflammation References
Khan SA, Suryawanshi AR, Ranpura SA, Jadhav SV, Khole VV: Identification of novel immunodominant epididymal sperm proteins using combinatorial approach. Reproduction. 2009 Jul;138(1):81-93. doi: 10.1530/REP-09-0052. Epub 2009 May 7.
Pubmed: 19423663
Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. doi: 10.1101/gr.2596504.
Pubmed: 15489334
Kullberg M, Nilsson MA, Arnason U, Harley EH, Janke A: Housekeeping genes for phylogenetic analysis of eutherian relationships. Mol Biol Evol. 2006 Aug;23(8):1493-503. doi: 10.1093/molbev/msl027. Epub 2006 Jun 2.
Pubmed: 16751257
Gould SJ, Subramani S, Scheffler IE: Use of the DNA polymerase chain reaction for homology probing: isolation of partial cDNA or genomic clones encoding the iron-sulfur protein of succinate dehydrogenase from several species. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1934-8. doi: 10.1073/pnas.86.6.1934.
Pubmed: 2494655
Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, Okwuonu G, Hines S, Lewis L, DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hawes A, Gill R, Celera, Holt RA, Adams MD, Amanatides PG, Baden-Tillson H, Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, Glodek A, Gu Z, Jennings D, Kraft CL, Nguyen T, Pfannkoch CM, Sitter C, Sutton GG, Venter JC, Woodage T, Smith D, Lee HM, Gustafson E, Cahill P, Kana A, Doucette-Stamm L, Weinstock K, Fechtel K, Weiss RB, Dunn DM, Green ED, Blakesley RW, Bouffard GG, De Jong PJ, Osoegawa K, Zhu B, Marra M, Schein J, Bosdet I, Fjell C, Jones S, Krzywinski M, Mathewson C, Siddiqui A, Wye N, McPherson J, Zhao S, Fraser CM, Shetty J, Shatsman S, Geer K, Chen Y, Abramzon S, Nierman WC, Havlak PH, Chen R, Durbin KJ, Egan A, Ren Y, Song XZ, Li B, Liu Y, Qin X, Cawley S, Worley KC, Cooney AJ, D'Souza LM, Martin K, Wu JQ, Gonzalez-Garay ML, Jackson AR, Kalafus KJ, McLeod MP, Milosavljevic A, Virk D, Volkov A, Wheeler DA, Zhang Z, Bailey JA, Eichler EE, Tuzun E, Birney E, Mongin E, Ureta-Vidal A, Woodwark C, Zdobnov E, Bork P, Suyama M, Torrents D, Alexandersson M, Trask BJ, Young JM, Huang H, Wang H, Xing H, Daniels S, Gietzen D, Schmidt J, Stevens K, Vitt U, Wingrove J, Camara F, Mar Alba M, Abril JF, Guigo R, Smit A, Dubchak I, Rubin EM, Couronne O, Poliakov A, Hubner N, Ganten D, Goesele C, Hummel O, Kreitler T, Lee YA, Monti J, Schulz H, Zimdahl H, Himmelbauer H, Lehrach H, Jacob HJ, Bromberg S, Gullings-Handley J, Jensen-Seaman MI, Kwitek AE, Lazar J, Pasko D, Tonellato PJ, Twigger S, Ponting CP, Duarte JM, Rice S, Goodstadt L, Beatson SA, Emes RD, Winter EE, Webber C, Brandt P, Nyakatura G, Adetobi M, Chiaromonte F, Elnitski L, Eswara P, Hardison RC, Hou M, Kolbe D, Makova K, Miller W, Nekrutenko A, Riemer C, Schwartz S, Taylor J, Yang S, Zhang Y, Lindpaintner K, Andrews TD, Caccamo M, Clamp M, Clarke L, Curwen V, Durbin R, Eyras E, Searle SM, Cooper GM, Batzoglou S, Brudno M, Sidow A, Stone EA, Venter JC, Payseur BA, Bourque G, Lopez-Otin C, Puente XS, Chakrabarti K, Chatterji S, Dewey C, Pachter L, Bray N, Yap VB, Caspi A, Tesler G, Pevzner PA, Haussler D, Roskin KM, Baertsch R, Clawson H, Furey TS, Hinrichs AS, Karolchik D, Kent WJ, Rosenbloom KR, Trumbower H, Weirauch M, Cooper DN, Stenson PD, Ma B, Brent M, Arumugam M, Shteynberg D, Copley RR, Taylor MS, Riethman H, Mudunuri U, Peterson J, Guyer M, Felsenfeld A, Old S, Mockrin S, Collins F: Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004 Apr 1;428(6982):493-521. doi: 10.1038/nature02426.
Pubmed: 15057822
Florea L, Di Francesco V, Miller J, Turner R, Yao A, Harris M, Walenz B, Mobarry C, Merkulov GV, Charlab R, Dew I, Deng Z, Istrail S, Li P, Sutton G: Gene and alternative splicing annotation with AIR. Genome Res. 2005 Jan;15(1):54-66. doi: 10.1101/gr.2889405.
Pubmed: 15632090
Elshourbagy NA, Near JC, Kmetz PJ, Sathe GM, Southan C, Strickler JE, Gross M, Young JF, Wells TN, Groot PH: Rat ATP citrate-lyase. Molecular cloning and sequence analysis of a full-length cDNA and mRNA abundance as a function of diet, organ, and age. J Biol Chem. 1990 Jan 25;265(3):1430-5.
Pubmed: 2295639
Moon YA, Kim KS, Park SW, Kim YS: Cloning and identification of exon-intron organization of the rat ATP-citrate lyase gene. Biochim Biophys Acta. 1996 Jul 17;1307(3):280-4. doi: 10.1016/0167-4781(96)00067-x.
Pubmed: 8688462
Lopez-Casillas F, Bai DH, Luo XC, Kong IS, Hermodson MA, Kim KH: Structure of the coding sequence and primary amino acid sequence of acetyl-coenzyme A carboxylase. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5784-8. doi: 10.1073/pnas.85.16.5784.
Pubmed: 2901088
Luo XC, Park K, Lopez-Casillas F, Kim KH: Structural features of the acetyl-CoA carboxylase gene: mechanisms for the generation of mRNAs with 5' end heterogeneity. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4042-6. doi: 10.1073/pnas.86.11.4042.
Pubmed: 2566999
Saad Y, Garrett MR, Manickavasagam E, Yerga-Woolwine S, Farms P, Radecki T, Joe B: Fine-mapping and comprehensive transcript analysis reveals nonsynonymous variants within a novel 1.17 Mb blood pressure QTL region on rat chromosome 10. Genomics. 2007 Mar;89(3):343-53. doi: 10.1016/j.ygeno.2006.12.005. Epub 2007 Jan 10.
Pubmed: 17218081
Lundby A, Secher A, Lage K, Nordsborg NB, Dmytriyev A, Lundby C, Olsen JV: Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat Commun. 2012 Jun 6;3:876. doi: 10.1038/ncomms1871.
Pubmed: 22673903
Nikodem VM, Magnuson MA, Dozin B, Morioka H: Coding nucleotide sequence of rat malic enzyme mRNA and tissue specific regulation by thyroid hormone. Endocr Res. 1989;15(4):547-64.
Pubmed: 2699453
Magnuson MA, Morioka H, Tecce MF, Nikodem VM: Coding nucleotide sequence of rat liver malic enzyme mRNA. J Biol Chem. 1986 Jan 25;261(3):1183-6.
Pubmed: 3753699
Morioka H, Tennyson GE, Nikodem VM: Structural and functional analysis of the rat malic enzyme gene promoter. Mol Cell Biol. 1988 Aug;8(8):3542-5. doi: 10.1128/mcb.8.8.3542.
Pubmed: 3211151
Kaplan RS, Mayor JA, Wood DO: The mitochondrial tricarboxylate transport protein. cDNA cloning, primary structure, and comparison with other mitochondrial transport proteins. J Biol Chem. 1993 Jun 25;268(18):13682-90.
Pubmed: 8514800
Gekakis N, Johnson RC, Jerkins A, Mains RE, Sul HS: Structure, distribution, and functional expression of the phosphofructokinase C isozyme. J Biol Chem. 1994 Feb 4;269(5):3348-55.
Pubmed: 8106374
Galea E, Reis DJ, Fox ES, Xu H, Feinstein DL: CD14 mediate endotoxin induction of nitric oxide synthase in cultured brain glial cells. J Neuroimmunol. 1996 Jan;64(1):19-28. doi: 10.1016/0165-5728(95)00143-3.
Pubmed: 8598386
Takai N, Kataoka M, Higuchi Y, Matsuura K, Yamamoto S: Primary structure of rat CD14 and characteristics of rat CD14, cytokine, and NO synthase mRNA expression in mononuclear phagocyte system cells in response to LPS. J Leukoc Biol. 1997 Jun;61(6):736-44. doi: 10.1002/jlb.61.6.736.
Pubmed: 9201265
Liu S, Khemlani LS, Shapiro RA, Johnson ML, Liu K, Geller DA, Watkins SC, Goyert SM, Billiar TR: Expression of CD14 by hepatocytes: upregulation by cytokines during endotoxemia. Infect Immun. 1998 Nov;66(11):5089-98.
Pubmed: 9784508
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0100046
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings