Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Nicotinate and Nicotinamide Metabolism
Drosophila melanogaster
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2019-02-12
Last Updated: 2023-10-28
Nicotinate/nicotinic acid/niacin is a form of vitamin B3 that is primarily obtained through whole and processed, as well as fortified foods. Another form of vitamin B3 is nicotinamide/niacinamide, which is also obtained in trace amounts from dietary sources. Nicotinamide is critically important in the structure of NAD(H) and NADP(H), which are both used as coenzymes in oxidation-reduction reactions such as the citric acid cycle and the electron transport chain.
Nicotinic acid from dietary sources can be converted to and from nicotinate beta-D-ribonucleotide by nicotinate phosphoribosyltransferase. This compound may then be converted to nicotinate D-ribonucleoside by 5'-nucleotidase after the addition of a water molecule. Nicotinate D-ribonucleoside can then be converted to and from nicotinic acid by a purine-nucleoside phosphorylase. Nicotinate beta-D-ribonucleotide can also be converted to and from nicotinic acid adenine dinucleotide by nicotinamide-nucleotide adenylyltransferase. Following that reaction, it can be further converted to nicotinamide adenine dinucleotide (NAD) by a probable glutamine-dependent NAD synthetase.
If the starting compound is instead nicotinamide, it undergoes reactions using the same three enzymes as nicotinic acid. Firstly, purine nucleoside phosphorylase catalyzes its conversion to nicotinamide riboside, following which a 5'-nucleotidase converts it to nicotinamide ribotide. Finally, nicotinamide-nucleotide adenylyltransferase takes nicotinamide ribotide and forms NAD. Finally, within the nucleus of the cell, NAD kinase takes a phosphate from ATP and forms NADP from NAD. This is then used in many reactions in the body.
References
Nicotinate and Nicotinamide Metabolism References
BEHRMAN EJ, STANIER RY: The bacterial oxidation of nicotinic acid. J Biol Chem. 1957 Oct;228(2):923-45.
Pubmed: 13475371
Alhapel A, Darley DJ, Wagener N, Eckel E, Elsner N, Pierik AJ: Molecular and functional analysis of nicotinate catabolism in Eubacterium barkeri. Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12341-6. doi: 10.1073/pnas.0601635103. Epub 2006 Aug 7.
Pubmed: 16894175
Baitsch D, Sandu C, Brandsch R, Igloi GL: Gene cluster on pAO1 of Arthrobacter nicotinovorans involved in degradation of the plant alkaloid nicotine: cloning, purification, and characterization of 2,6-dihydroxypyridine 3-hydroxylase. J Bacteriol. 2001 Sep;183(18):5262-7.
Pubmed: 11514508
Sachelaru P, Schiltz E, Igloi GL, Brandsch R: An alpha/beta-fold C--C bond hydrolase is involved in a central step of nicotine catabolism by Arthrobacter nicotinovorans. J Bacteriol. 2005 Dec;187(24):8516-9. doi: 10.1128/JB.187.24.8516-8519.2005.
Pubmed: 16321959
Galeazzi L, Bocci P, Amici A, Brunetti L, Ruggieri S, Romine M, Reed S, Osterman AL, Rodionov DA, Sorci L, Raffaelli N: Identification of nicotinamide mononucleotide deamidase of the bacterial pyridine nucleotide cycle reveals a novel broadly conserved amidohydrolase family. J Biol Chem. 2011 Nov 18;286(46):40365-75. doi: 10.1074/jbc.M111.275818. Epub 2011 Sep 27.
Pubmed: 21953451
Gherna RL, Richardson SH, Rittenberg SC: The bacterial oxidation of nicotine. VI. The metabolism of 2,6-dihydroxypseudooxynicotine. J Biol Chem. 1965 Sep;240(9):3669-74.
Pubmed: 5835946
Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA, Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers YH, Blazej RG, Champe M, Pfeiffer BD, Wan KH, Doyle C, Baxter EG, Helt G, Nelson CR, Gabor GL, Abril JF, Agbayani A, An HJ, Andrews-Pfannkoch C, Baldwin D, Ballew RM, Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV, Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies P, de Pablos B, Delcher A, Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM, Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston KA, Howland TJ, Wei MH, Ibegwam C, Jalali M, Kalush F, Karpen GH, Ke Z, Kennison JA, Ketchum KA, Kimmel BE, Kodira CD, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky AA, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh TC, McLeod MP, McPherson D, Merkulov G, Milshina NV, Mobarry C, Morris J, Moshrefi A, Mount SM, Moy M, Murphy B, Murphy L, Muzny DM, Nelson DL, Nelson DR, Nelson KA, Nixon K, Nusskern DR, Pacleb JM, Palazzolo M, Pittman GS, Pan S, Pollard J, Puri V, Reese MG, Reinert K, Remington K, Saunders RD, Scheeler F, Shen H, Shue BC, Siden-Kiamos I, Simpson M, Skupski MP, Smith T, Spier E, Spradling AC, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang AH, Wang X, Wang ZY, Wassarman DA, Weinstock GM, Weissenbach J, Williams SM, WoodageT, Worley KC, Wu D, Yang S, Yao QA, Ye J, Yeh RF, Zaveri JS, Zhan M, Zhang G, Zhao Q, Zheng L, Zheng XH, Zhong FN, Zhong W, Zhou X, Zhu S, Zhu X, Smith HO, Gibbs RA, Myers EW, Rubin GM, Venter JC: The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185-95. doi: 10.1126/science.287.5461.2185.
Pubmed: 10731132
Celniker SE, Wheeler DA, Kronmiller B, Carlson JW, Halpern A, Patel S, Adams M, Champe M, Dugan SP, Frise E, Hodgson A, George RA, Hoskins RA, Laverty T, Muzny DM, Nelson CR, Pacleb JM, Park S, Pfeiffer BD, Richards S, Sodergren EJ, Svirskas R, Tabor PE, Wan K, Stapleton M, Sutton GG, Venter C, Weinstock G, Scherer SE, Myers EW, Gibbs RA, Rubin GM: Finishing a whole-genome shotgun: release 3 of the Drosophila melanogaster euchromatic genome sequence. Genome Biol. 2002;3(12):RESEARCH0079. doi: 10.1186/gb-2002-3-12-research0079. Epub 2002 Dec 23.
Pubmed: 12537568
Misra S, Crosby MA, Mungall CJ, Matthews BB, Campbell KS, Hradecky P, Huang Y, Kaminker JS, Millburn GH, Prochnik SE, Smith CD, Tupy JL, Whitfied EJ, Bayraktaroglu L, Berman BP, Bettencourt BR, Celniker SE, de Grey AD, Drysdale RA, Harris NL, Richter J, Russo S, Schroeder AJ, Shu SQ, Stapleton M, Yamada C, Ashburner M, Gelbart WM, Rubin GM, Lewis SE: Annotation of the Drosophila melanogaster euchromatic genome: a systematic review. Genome Biol. 2002;3(12):RESEARCH0083. doi: 10.1186/gb-2002-3-12-research0083. Epub 2002 Dec 31.
Pubmed: 12537572
Wen DT, Zheng L, Ni L, Wang H, Feng Y, Zhang M: The expression of CG9940 affects the adaptation of cardiac function, mobility, and lifespan to exercise in aging Drosophila. Exp Gerontol. 2016 Oct;83:6-14. doi: 10.1016/j.exger.2016.07.006. Epub 2016 Jul 19.
Pubmed: 27448710
Stapleton M, Carlson J, Brokstein P, Yu C, Champe M, George R, Guarin H, Kronmiller B, Pacleb J, Park S, Wan K, Rubin GM, Celniker SE: A Drosophila full-length cDNA resource. Genome Biol. 2002;3(12):RESEARCH0080. doi: 10.1186/gb-2002-3-12-research0080. Epub 2002 Dec 23.
Pubmed: 12537569
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings