Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Polymyxin Resistance
Pseudomonas aeruginosa
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2019-08-12
Last Updated: 2019-08-16
UDP-glucuronic acid compound undergoes a NAD dependent reaction through a bifunctional polymyxin resistance protein to produce UDP-Beta-L-threo-pentapyranos-4-ulose. This compound then reacts with L-glutamic acid through a UDP-4-amino-4-deoxy-L-arabinose--oxoglutarate aminotransferase to produce an oxoglutaric acid and UDP-4-amino-4-deoxy-beta-L-arabinopyranose The latter compound interacts with a N10-formyl-tetrahydrofolate through a bifunctional polymyxin resistance protein ArnA, resulting in a tetrahydrofolate, a hydrogen ion and a UDP-4-deoxy-4-formamido-beta-L-arabinopyranose, which in turn reacts with a product of the methylerythritol phosphate and polysoprenoid biosynthesis pathway, di-trans,octa-cis-undecaprenyl phosphate to produce a 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate.
The compound 4-deoxy-4-formamido-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate hypothetically reacts with water and results in the release of a formic acid and 4-amino-4-deoxy-α-L-arabinopyranosyl ditrans,octacis-undecaprenyl phosphate which in turn reacts with a KDO2-lipid A through a 4-amino-4-deoxy-L-arabinose transferase resulting in the release of a di-trans,octa-cis-undecaprenyl phosphate and a L-Ara4N-modified KDO2-Lipid A
References
Polymyxin Resistance References
Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV: Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000 Aug 31;406(6799):959-64. doi: 10.1038/35023079.
Pubmed: 10984043
Winstanley C, Langille MG, Fothergill JL, Kukavica-Ibrulj I, Paradis-Bleau C, Sanschagrin F, Thomson NR, Winsor GL, Quail MA, Lennard N, Bignell A, Clarke L, Seeger K, Saunders D, Harris D, Parkhill J, Hancock RE, Brinkman FS, Levesque RC: Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. Genome Res. 2009 Jan;19(1):12-23. doi: 10.1101/gr.086082.108. Epub 2008 Dec 1.
Pubmed: 19047519
Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL, Miyata S, Diggins LT, He J, Saucier M, Deziel E, Friedman L, Li L, Grills G, Montgomery K, Kucherlapati R, Rahme LG, Ausubel FM: Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol. 2006;7(10):R90. doi: 10.1186/gb-2006-7-10-r90. Epub 2006 Oct 12.
Pubmed: 17038190
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0002065
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings