
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
D-Glutamine and D-Glutamate Metabolism
Escherichia coli 042
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2024-12-14
Last Updated: 2025-06-02
L-Glutamine is transported into the cytoplasm through a glutamine ABC transporter. Once inside, L-glutamine is metabolized with glutaminase to produce an L-glutamic acid. This process can be reversed through a glutamine synthetase resulting in L-glutamine. L-glutamic acid can also be transported into the cytoplasm through various methods: a glutamate/aspartate:H+ symporter GltP, a glutamate:sodium symporter, or a glutamate/aspartate ABC transporter. L-Glutamic acid can proceed to L-glutamate metabolism or it can undergo a reversible reaction through a glutamate racemase resulting in D-glutamic acid. This compound can also be obtained from D-glutamine interacting with a glutaminase. D-Glutamic acid reacts with UDP-N-acetylmuramoyl-L-alanine through an ATP-driven UDP-N-acetylmuramoylalanine-D-glutamate ligase resulting in a UDP-N-acetylmuramoyl-L-alanyl-D-glutamate which is then integrated into peptidoglycan biosynthesis. UDP-N-acetylmuramoyl-L-alanine comes from the amino sugar and nucleotide sugar metabolism product, UDP-N-acetylmuraminate which reacts with L-alanine through an ATP-driven UDP-N-acetylmuramate-L-alanine ligase.
References
D-Glutamine and D-Glutamate Metabolism References
Ikeda M, Wachi M, Ishino F, Matsuhashi M: Nucleotide sequence involving murD and an open reading frame ORF-Y spacing murF and ftsW in Escherichia coli. Nucleic Acids Res. 1990 Feb 25;18(4):1058. doi: 10.1093/nar/18.4.1058.
Pubmed: 2179861
Mengin-Lecreulx D, van Heijenoort J: Nucleotide sequence of the murD gene encoding the UDP-MurNAc-L-Ala-D-Glu synthetase of Escherichia coli. Nucleic Acids Res. 1990 Jan 11;18(1):183. doi: 10.1093/nar/18.1.183.
Pubmed: 2129548
Yura T, Mori H, Nagai H, Nagata T, Ishihama A, Fujita N, Isono K, Mizobuchi K, Nakata A: Systematic sequencing of the Escherichia coli genome: analysis of the 0-2.4 min region. Nucleic Acids Res. 1992 Jul 11;20(13):3305-8. doi: 10.1093/nar/20.13.3305.
Pubmed: 1630901
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu CF, Grishin NV, Zhao Y: Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics. 2009 Feb;8(2):215-25. doi: 10.1074/mcp.M800187-MCP200. Epub 2008 Aug 23.
Pubmed: 18723842
Miranda-Rios J, Sanchez-Pescador R, Urdea M, Covarrubias AA: The complete nucleotide sequence of the glnALG operon of Escherichia coli K12. Nucleic Acids Res. 1987 Mar 25;15(6):2757-70. doi: 10.1093/nar/15.6.2757.
Pubmed: 2882477
Covarrubias AA, Bastarrachea F: Nucleotide sequence of the glnA control region of Escherichia coli. Mol Gen Genet. 1983;190(1):171-5. doi: 10.1007/bf00330342.
Pubmed: 6134228
Reitzer LJ, Magasanik B: Expression of glnA in Escherichia coli is regulated at tandem promoters. Proc Natl Acad Sci U S A. 1985 Apr;82(7):1979-83. doi: 10.1073/pnas.82.7.1979.
Pubmed: 2858855
Doublet P, van Heijenoort J, Mengin-Lecreulx D: Identification of the Escherichia coli murI gene, which is required for the biosynthesis of D-glutamic acid, a specific component of bacterial peptidoglycan. J Bacteriol. 1992 Sep;174(18):5772-9. doi: 10.1128/jb.174.18.5772-5779.1992.
Pubmed: 1355768
Doublet P, van Heijenoort J, Bohin JP, Mengin-Lecreulx D: The murI gene of Escherichia coli is an essential gene that encodes a glutamate racemase activity. J Bacteriol. 1993 May;175(10):2970-9. doi: 10.1128/jb.175.10.2970-2979.1993.
Pubmed: 8098327
Brosius J, Dull TJ, Sleeter DD, Noller HF: Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol. 1981 May 15;148(2):107-27. doi: 10.1016/0022-2836(81)90508-8.
Pubmed: 7028991
Ikeda M, Wachi M, Jung HK, Ishino F, Matsuhashi M: Nucleotide sequence involving murG and murC in the mra gene cluster region of Escherichia coli. Nucleic Acids Res. 1990 Jul 11;18(13):4014. doi: 10.1093/nar/18.13.4014.
Pubmed: 2197603
Nohno T, Saito T, Hong JS: Cloning and complete nucleotide sequence of the Escherichia coli glutamine permease operon (glnHPQ). Mol Gen Genet. 1986 Nov;205(2):260-9. doi: 10.1007/bf00430437.
Pubmed: 3027504
Oshima T, Aiba H, Baba T, Fujita K, Hayashi K, Honjo A, Ikemoto K, Inada T, Itoh T, Kajihara M, Kanai K, Kashimoto K, Kimura S, Kitagawa M, Makino K, Masuda S, Miki T, Mizobuchi K, Mori H, Motomura K, Nakamura Y, Nashimoto H, Nishio Y, Saito N, Horiuchi T, et al.: A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map. DNA Res. 1996 Jun 30;3(3):137-55. doi: 10.1093/dnares/3.3.137.
Pubmed: 8905232
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000792
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings