Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
D-Glutamine and D-Glutamate Metabolism
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-02-04
Last Updated: 2024-12-11
L-Glutamine is transported into the cytoplasm through a glutamine ABC transporter. Once inside, L-glutamine is metabolized with glutaminase to produce an L-glutamic acid. This process can be reversed through a glutamine synthetase resulting in L-glutamine. L-glutamic acid can also be transported into the cytoplasm through various methods: a glutamate/aspartate:H+ symporter GltP, a glutamate:sodium symporter, or a glutamate/aspartate ABC transporter. L-Glutamic acid can proceed to L-glutamate metabolism or it can undergo a reversible reaction through a glutamate racemase resulting in D-glutamic acid. This compound can also be obtained from D-glutamine interacting with a glutaminase. D-Glutamic acid reacts with UDP-N-acetylmuramoyl-L-alanine through an ATP-driven UDP-N-acetylmuramoylalanine-D-glutamate ligase resulting in a UDP-N-acetylmuramoyl-L-alanyl-D-glutamate which is then integrated into peptidoglycan biosynthesis. UDP-N-acetylmuramoyl-L-alanine comes from the amino sugar and nucleotide sugar metabolism product, UDP-N-acetylmuraminate which reacts with L-alanine through an ATP-driven UDP-N-acetylmuramate-L-alanine ligase.
References
D-Glutamine and D-Glutamate Metabolism References
Helling RB: Why does Escherichia coli have two primary pathways for synthesis of glutamate? J Bacteriol. 1994 Aug;176(15):4664-8.
Pubmed: 7913929
Huang H, Vandekeere S, Kalucka J, Bierhansl L, Zecchin A, Bruning U, Visnagri A, Yuldasheva N, Goveia J, Cruys B, Brepoels K, Wyns S, Rayport S, Ghesquiere B, Vinckier S, Schoonjans L, Cubbon R, Dewerchin M, Eelen G, Carmeliet P: Role of glutamine and interlinked asparagine metabolism in vessel formation. EMBO J. 2017 Aug 15;36(16):2334-2352. doi: 10.15252/embj.201695518. Epub 2017 Jun 28.
Pubmed: 28659375
Rowley NM, Madsen KK, Schousboe A, Steve White H: Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochem Int. 2012 Sep;61(4):546-58. doi: 10.1016/j.neuint.2012.02.013. Epub 2012 Feb 18.
Pubmed: 22365921
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu CF, Grishin NV, Zhao Y: Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics. 2009 Feb;8(2):215-25. doi: 10.1074/mcp.M800187-MCP200. Epub 2008 Aug 23.
Pubmed: 18723842
Ikeda M, Wachi M, Jung HK, Ishino F, Matsuhashi M: Nucleotide sequence involving murG and murC in the mra gene cluster region of Escherichia coli. Nucleic Acids Res. 1990 Jul 11;18(13):4014. doi: 10.1093/nar/18.13.4014.
Pubmed: 2197603
Yura T, Mori H, Nagai H, Nagata T, Ishihama A, Fujita N, Isono K, Mizobuchi K, Nakata A: Systematic sequencing of the Escherichia coli genome: analysis of the 0-2.4 min region. Nucleic Acids Res. 1992 Jul 11;20(13):3305-8. doi: 10.1093/nar/20.13.3305.
Pubmed: 1630901
Ikeda M, Wachi M, Ishino F, Matsuhashi M: Nucleotide sequence involving murD and an open reading frame ORF-Y spacing murF and ftsW in Escherichia coli. Nucleic Acids Res. 1990 Feb 25;18(4):1058. doi: 10.1093/nar/18.4.1058.
Pubmed: 2179861
Mengin-Lecreulx D, van Heijenoort J: Nucleotide sequence of the murD gene encoding the UDP-MurNAc-L-Ala-D-Glu synthetase of Escherichia coli. Nucleic Acids Res. 1990 Jan 11;18(1):183. doi: 10.1093/nar/18.1.183.
Pubmed: 2129548
Tolner B, Poolman B, Wallace B, Konings WN: Revised nucleotide sequence of the gltP gene, which encodes the proton-glutamate-aspartate transport protein of Escherichia coli K-12. J Bacteriol. 1992 Apr;174(7):2391-3. doi: 10.1128/jb.174.7.2391-2393.1992.
Pubmed: 1551855
Deguchi Y, Yamato I, Anraku Y: Molecular cloning of gltS and gltP, which encode glutamate carriers of Escherichia coli B. J Bacteriol. 1989 Mar;171(3):1314-9. doi: 10.1128/jb.171.3.1314-1319.1989.
Pubmed: 2537813
Wallace B, Yang YJ, Hong JS, Lum D: Cloning and sequencing of a gene encoding a glutamate and aspartate carrier of Escherichia coli K-12. J Bacteriol. 1990 Jun;172(6):3214-20. doi: 10.1128/jb.172.6.3214-3220.1990.
Pubmed: 1971622
Deguchi Y, Yamato I, Anraku Y: Nucleotide sequence of gltS, the Na+/glutamate symport carrier gene of Escherichia coli B. J Biol Chem. 1990 Dec 15;265(35):21704-8.
Pubmed: 2254324
Kalman M, Gentry DR, Cashel M: Characterization of the Escherichia coli K12 gltS glutamate permease gene. Mol Gen Genet. 1991 Mar;225(3):379-86. doi: 10.1007/bf00261677.
Pubmed: 2017136
Oshima T, Aiba H, Baba T, Fujita K, Hayashi K, Honjo A, Ikemoto K, Inada T, Itoh T, Kajihara M, Kanai K, Kashimoto K, Kimura S, Kitagawa M, Makino K, Masuda S, Miki T, Mizobuchi K, Mori H, Motomura K, Nakamura Y, Nashimoto H, Nishio Y, Saito N, Horiuchi T, et al.: A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map. DNA Res. 1996 Jun 30;3(3):137-55. doi: 10.1093/dnares/3.3.137.
Pubmed: 8905232
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000792
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings