Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Ornithine Metabolism
Escherichia coli HS
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2024-12-16
Last Updated: 2024-12-16
In the ornithine biosynthesis pathway of E. coli, L-glutamate is acetylated to N-acetylglutamate by the enzyme N-acetylglutamate synthase, encoded by the argA gene. The acetyl donor for this reaction is acetyl-CoA. N-acetylglutamic acid is then phosphorylated via an ATP driven acetylglutamate kinase which yields a N-acetyl-L-glutamyl 5-phosphate. The product undergoes a NADPH dependent reduction resulting in N-acetyl-L-glutamate 5-semialdehyde which then reacts with L-glutamic acid through a acetylornithine aminotransferase / N-succinyldiaminopimelate aminotransferase to produce a N-acetylornithine. Deacetylated through an acetylornithine deacetylase, N-acetylornithine finally yields an ornithine. Ornithine interacts with hydrogen ion through an ornithine decarboxylase resulting in a carbon dioxide release and a putrescine. Putrescine can be metabolized by reaction with either l-glutamic acid or oxoglutaric acid. If putrescine reacts with L-glutamic acid, it reacts through an ATP mediated gamma-glutamylputrescine producing a hydrogen ion, ADP, phosphate and gamma-glutamyl-L-putrescine. This compound is reduced by interacting with oxygen, water and a gamma-glutamylputrescine oxidoreductase resulting in ammonium, hydrogen peroxide and 4-gamma-glutamylamino butanal. The previous product is then dehydrogenated through a NADP mediated reaction lead by gamma-glutamyl-gamma-aminobutaryaldehyde dehydrogenase resulting in hydrogen ion, NADPH and 4-glutamylamino butanoate. In turn, the latter compound reacts with water through a gamma-glutamyl-gamma-aminobutyrate hydrolase resulting in L-glutamic acid and Gamma aminobutyric acid. On the other hand, if putrescine reacts with oxoglutaric acid through a putrescine aminotransferase, it results in L-glutamic acid, and a 4-aminobutyraldehyde. 4-aminobutyraldehyde reacts with water through a NAD dependent gamma aminobutyraldehyde dehydrogenase resulting in hydrogen ion, NADH and gamma-aminobutyric acid. Gamma Aaminobutyric acid reacts with oxoglutaric acid through 4-aminobutyrate aminotransferase resulting in L-glutamic acid and succinic acid semialdehyde. Succinic acid semialdehyde in turn can react with with either NADP or NAD to result in the production of succinic acid through succinate-semialdehyde dehydrogenase or aldehyde dehydrogenase-like protein yneI respectively. Succinic acid can then be integrated in the TCA cycle.
References
Ornithine Metabolism References
Parsot C, Boyen A, Cohen GN, Glansdorff N: Nucleotide sequence of Escherichia coli argB and argC genes: comparison of N-acetylglutamate kinase and N-acetylglutamate-gamma-semialdehyde dehydrogenase with homologous and analogous enzymes. Gene. 1988 Sep 7;68(2):275-83. doi: 10.1016/0378-1119(88)90030-3.
Pubmed: 2851495
Blattner FR, Burland V, Plunkett G 3rd, Sofia HJ, Daniels DL: Analysis of the Escherichia coli genome. IV. DNA sequence of the region from 89.2 to 92.8 minutes. Nucleic Acids Res. 1993 Nov 25;21(23):5408-17. doi: 10.1093/nar/21.23.5408.
Pubmed: 8265357
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Kurihara S, Oda S, Kato K, Kim HG, Koyanagi T, Kumagai H, Suzuki H: A novel putrescine utilization pathway involves gamma-glutamylated intermediates of Escherichia coli K-12. J Biol Chem. 2005 Feb 11;280(6):4602-8. doi: 10.1074/jbc.M411114200. Epub 2004 Dec 8.
Pubmed: 15590624
Heim R, Strehler EE: Cloning an Escherichia coli gene encoding a protein remarkably similar to mammalian aldehyde dehydrogenases. Gene. 1991 Mar 1;99(1):15-23. doi: 10.1016/0378-1119(91)90028-a.
Pubmed: 1840553
Kurihara S, Oda S, Kumagai H, Suzuki H: Gamma-glutamyl-gamma-aminobutyrate hydrolase in the putrescine utilization pathway of Escherichia coli K-12. FEMS Microbiol Lett. 2006 Mar;256(2):318-23. doi: 10.1111/j.1574-6968.2006.00137.x.
Pubmed: 16499623
Samsonova NN, Smirnov SV, Altman IB, Ptitsyn LR: Molecular cloning and characterization of Escherichia coli K12 ygjG gene. BMC Microbiol. 2003 Jan 31;3(1):2.
Pubmed: 12617754
Niegemann E, Schulz A, Bartsch K: Molecular organization of the Escherichia coli gab cluster: nucleotide sequence of the structural genes gabD and gabP and expression of the GABA permease gene. Arch Microbiol. 1993;160(6):454-60.
Pubmed: 8297211
Metzner M, Germer J, Hengge R: Multiple stress signal integration in the regulation of the complex sigma S-dependent csiD-ygaF-gabDTP operon in Escherichia coli. Mol Microbiol. 2004 Feb;51(3):799-811. doi: 10.1046/j.1365-2958.2003.03867.x.
Pubmed: 14731280
Yamamoto Y, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kimura S, Kitagawa M, Makino K, Miki T, Mitsuhashi N, Mizobuchi K, Mori H, Nakade S, Nakamura Y, Nashimoto H, Oshima T, Oyama S, Saito N, Sampei G, Satoh Y, Sivasundaram S, Tagami H, Horiuchi T, et al.: Construction of a contiguous 874-kb sequence of the Escherichia coli -K12 genome corresponding to 50.0-68.8 min on the linkage map and analysis of its sequence features. DNA Res. 1997 Apr 28;4(2):91-113. doi: 10.1093/dnares/4.2.91.
Pubmed: 9205837
Meinnel T, Schmitt E, Mechulam Y, Blanquet S: Structural and biochemical characterization of the Escherichia coli argE gene product. J Bacteriol. 1992 Apr;174(7):2323-31. doi: 10.1128/jb.174.7.2323-2331.1992.
Pubmed: 1551850
Boyen A, Charlier D, Charlier J, Sakanyan V, Mett I, Glansdorff N: Acetylornithine deacetylase, succinyldiaminopimelate desuccinylase and carboxypeptidase G2 are evolutionarily related. Gene. 1992 Jul 1;116(1):1-6. doi: 10.1016/0378-1119(92)90621-u.
Pubmed: 1628835
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000813
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings