Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Hexuronide and Hexuronate Degradation
Escherichia coli E24377A
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2025-01-21
Last Updated: 2025-01-21
Beta-D-glucuronosides, D-glucuronate and D-fructuronate can be used as a source of carbon for E.coli. They are imported into E.coli's periplasmic space by membrane-associated protein (UidC/gusC), and are further imported into cytoplasm by hydrogen symporter. Beta-glucuronides undergoes hydrolysis by beta-D-glucuronidase to form D-glucuronate. D-glucuronate is isomerized by D-glucuronate isomerase to form D-fructuronate. D-fructuronate is further reduced to D-mannonate by D-mannonate oxidoreductase. D-mannonate dehydratase dehydrated to yield 2-dehydro-3-deoxy-D-gluconate. At this point, a common enzyme, 2-keto-3-deoxygluconokinase, phosphorylates 2-dehydro-3-deoxy-D-gluconate to yield 2-dehydro-3-deoxy-D-gluconate-6-phosphate. This product is then process by KHG/KDPG aldolase which in turn produces D-Glyceraldehyde 3-phosphate and Pyruvic Acid which then go into their respective sub pathways: glycolysis and pyruvate dehydrogenase. The pathway can also start from 3 other points: a hydrogen ion symporter (gluconate/fructuronate transporter GntP) of D-fructuronate, a hydrogen ion symporter (Hexuronate transporter) of aldehydo-D-galacturonate that spontaneously turns into D-tagaturonate. This compound can also be obtained by the reaction of aldehydo-L-galactonate with a NAD dependent l-galactonate oxidoreductase resulting in the release of NADH, hydrogen ion. Tagaturonate then undergoes an NADH-dependent reduction to D-altronate through an altronate oxidoreductase. D-altronate undergoes dehydration to yield 2-dehydro-3-deoxy-D-gluconate, the third and last point where the reaction can start from a hydrogen symporter of a 2-dehydro-3-deoy-D-gluconate.
References
Hexuronide and Hexuronate Degradation References
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Shimada T, Yamamoto K, Ishihama A: Involvement of the leucine response transcription factor LeuO in regulation of the genes for sulfa drug efflux. J Bacteriol. 2009 Jul;191(14):4562-71. doi: 10.1128/JB.00108-09. Epub 2009 May 8.
Pubmed: 19429622
Burland V, Plunkett G 3rd, Sofia HJ, Daniels DL, Blattner FR: Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res. 1995 Jun 25;23(12):2105-19. doi: 10.1093/nar/23.12.2105.
Pubmed: 7610040
Dreyer JL: The role of iron in the activation of mannonic and altronic acid hydratases, two Fe-requiring hydro-lyases. Eur J Biochem. 1987 Aug 3;166(3):623-30. doi: 10.1111/j.1432-1033.1987.tb13559.x.
Pubmed: 3038546
Blanco C, Mata-Gilsinger M: A DNA sequence containing the control sites for the uxaB gene of Escherichia coli. J Gen Microbiol. 1986 Mar;132(3):697-705. doi: 10.1099/00221287-132-3-697.
Pubmed: 3525742
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Sofia HJ, Burland V, Daniels DL, Plunkett G 3rd, Blattner FR: Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids Res. 1994 Jul 11;22(13):2576-86. doi: 10.1093/nar/22.13.2576.
Pubmed: 8041620
Egan SE, Fliege R, Tong S, Shibata A, Wolf RE Jr, Conway T: Molecular characterization of the Entner-Doudoroff pathway in Escherichia coli: sequence analysis and localization of promoters for the edd-eda operon. J Bacteriol. 1992 Jul;174(14):4638-46. doi: 10.1128/jb.174.14.4638-4646.1992.
Pubmed: 1624451
Vlahos CJ, Dekker EE: The complete amino acid sequence and identification of the active-site arginine peptide of Escherichia coli 2-keto-4-hydroxyglutarate aldolase. J Biol Chem. 1988 Aug 25;263(24):11683-91.
Pubmed: 3136164
Patil RV, Dekker EE: Cloning, nucleotide sequence, overexpression, and inactivation of the Escherichia coli 2-keto-4-hydroxyglutarate aldolase gene. J Bacteriol. 1992 Jan;174(1):102-7. doi: 10.1128/jb.174.1.102-107.1992.
Pubmed: 1339418
Kuivanen J, Richard P: The yjjN of E. coli codes for an L-galactonate dehydrogenase and can be used for quantification of L-galactonate and L-gulonate. Appl Biochem Biotechnol. 2014 Aug;173(7):1829-35. doi: 10.1007/s12010-014-0969-0. Epub 2014 May 27.
Pubmed: 24861318
Jefferson RA, Burgess SM, Hirsh D: beta-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8447-51. doi: 10.1073/pnas.83.22.8447.
Pubmed: 3534890
Schlaman HR, Risseeuw E, Franke-van Dijk ME, Hooykaas PJ: Nucleotide sequence corrections of the uidA open reading frame encoding beta-glucuronidase. Gene. 1994 Jan 28;138(1-2):259-60. doi: 10.1016/0378-1119(94)90820-6.
Pubmed: 8125312
Farrell LB, Beachy RN: Manipulation of beta-glucuronidase for use as a reporter in vacuolar targeting studies. Plant Mol Biol. 1990 Dec;15(6):821-5. doi: 10.1007/bf00039422.
Pubmed: 2103475
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000854
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings