Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Secondary Metabolites: Trehalose Biosynthesis and Metabolism
Escherichia coli DORA_B_14
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2025-01-23
Last Updated: 2025-01-23
Threhalose biosynthesis begins with an Alpha-D-glucose-1-phosphate interacting with an ATP through a glucose-1-phosphate adenylyltransferase resulting in the release of a pyrophosphate and an ADP-glucose. The latter compound interacts in a reversible reaction with an amylose through a glycogen synthase resulting in the release of an ADP and an amylose. Amylose then interacts in a reversible reaction with 1,4-α-glucan branching enzyme resulting in a glycogen
Glycogen can also be produced by a reversible reaction with Amylose through a maltodextrin phosphorylase, releasing a phosphate and a glycogen.
Glycogen is then transformed into trehalose through a glycogen debranching enzyme. Alpha Alpha Trehalose can be degraded by reacting with with a water molecule through a cytoplasmic trehalase resulting in the release of a Beta-D-glucose and an Alpha-D-glucose.phosphorylated resulting in a Beta-D-glucose 6-phosphate. This compound is phosphorylated and can then join glycolysis
Alpha Alpha Trehalose can be degraded in the periplasmic space by reacting with with a water molecule through a periplasmic trehalase resulting in the release of a Beta-D-glucose and an Alpha-D-glucose.
The beta-D-glucose can be transported into the cytosol through a PTS permease where it is phosphorylated resulting in a Beta-D-glucose 6-phosphate. This compound can then join glycolysis
References
Secondary Metabolites: Trehalose Biosynthesis and Metabolism References
Kumar A, Larsen CE, Preiss J: Biosynthesis of bacterial glycogen. Primary structure of Escherichia coli ADP-glucose:alpha-1,4-glucan, 4-glucosyltransferase as deduced from the nucleotide sequence of the glgA gene. J Biol Chem. 1986 Dec 5;261(34):16256-9.
Pubmed: 3097003
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Dauvillee D, Kinderf IS, Li Z, Kosar-Hashemi B, Samuel MS, Rampling L, Ball S, Morell MK: Role of the Escherichia coli glgX gene in glycogen metabolism. J Bacteriol. 2005 Feb;187(4):1465-73. doi: 10.1128/JB.187.4.1465-1473.2005.
Pubmed: 15687211
Sofia HJ, Burland V, Daniels DL, Plunkett G 3rd, Blattner FR: Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids Res. 1994 Jul 11;22(13):2576-86. doi: 10.1093/nar/22.13.2576.
Pubmed: 8041620
Meyer D, Schneider-Fresenius C, Horlacher R, Peist R, Boos W: Molecular characterization of glucokinase from Escherichia coli K-12. J Bacteriol. 1997 Feb;179(4):1298-306. doi: 10.1128/jb.179.4.1298-1306.1997.
Pubmed: 9023215
Yamamoto Y, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kimura S, Kitagawa M, Makino K, Miki T, Mitsuhashi N, Mizobuchi K, Mori H, Nakade S, Nakamura Y, Nashimoto H, Oshima T, Oyama S, Saito N, Sampei G, Satoh Y, Sivasundaram S, Tagami H, Horiuchi T, et al.: Construction of a contiguous 874-kb sequence of the Escherichia coli -K12 genome corresponding to 50.0-68.8 min on the linkage map and analysis of its sequence features. DNA Res. 1997 Apr 28;4(2):91-113. doi: 10.1093/dnares/4.2.91.
Pubmed: 9205837
Baecker PA, Greenberg E, Preiss J: Biosynthesis of bacterial glycogen. Primary structure of Escherichia coli 1,4-alpha-D-glucan:1,4-alpha-D-glucan 6-alpha-D-(1, 4-alpha-D-glucano)-transferase as deduced from the nucleotide sequence of the glg B gene. J Biol Chem. 1986 Jul 5;261(19):8738-43.
Pubmed: 3013861
Repoila F, Gutierrez C: Osmotic induction of the periplasmic trehalase in Escherichia coli K12: characterization of the treA gene promoter. Mol Microbiol. 1991 Mar;5(3):747-55. doi: 10.1111/j.1365-2958.1991.tb00745.x.
Pubmed: 1710760
Gutierrez C, Ardourel M, Bremer E, Middendorf A, Boos W, Ehmann U: Analysis and DNA sequence of the osmoregulated treA gene encoding the periplasmic trehalase of Escherichia coli K12. Mol Gen Genet. 1989 Jun;217(2-3):347-54. doi: 10.1007/bf02464903.
Pubmed: 2671658
Oshima T, Aiba H, Baba T, Fujita K, Hayashi K, Honjo A, Ikemoto K, Inada T, Itoh T, Kajihara M, Kanai K, Kashimoto K, Kimura S, Kitagawa M, Makino K, Masuda S, Miki T, Mizobuchi K, Mori H, Motomura K, Nakamura Y, Nashimoto H, Nishio Y, Saito N, Horiuchi T, et al.: A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map. DNA Res. 1996 Jun 30;3(3):137-55. doi: 10.1093/dnares/3.3.137.
Pubmed: 8905232
Debarbouille M, Cossart P, Raibaud O: A DNA sequence containing the control sites for gene malT and for the malPQ operon. Mol Gen Genet. 1982;185(1):88-92. doi: 10.1007/bf00333795.
Pubmed: 6283313
Palm D, Goerl R, Weidinger G, Zeier R, Fischer B, Schinzel R: E. coli maltodextrin phosphorylase: primary structure and deletion mapping of the C-terminal site. Z Naturforsch C. 1987 Apr;42(4):394-400.
Pubmed: 3037809
Ghosh P, Meyer C, Remy E, Peterson D, Preiss J: Cloning, expression, and nucleotide sequence of glgC gene from an allosteric mutant of Escherichia coli B. Arch Biochem Biophys. 1992 Jul;296(1):122-8. doi: 10.1016/0003-9861(92)90553-9.
Pubmed: 1339262
Meyer CR, Ghosh P, Remy E, Preiss J: Cloning, expression, and nucleotide sequence of a mutant glgC gene from Escherichia coli B. J Bacteriol. 1992 Jul;174(13):4509-12. doi: 10.1128/jb.174.13.4509-4512.1992.
Pubmed: 1320612
Baecker PA, Furlong CE, Preiss J: Biosynthesis of bacterial glycogen. Primary structure of Escherichia coli ADP-glucose synthetase as deduced from the nucleotide sequence of the glg C gene. J Biol Chem. 1983 Apr 25;258(8):5084-8.
Pubmed: 6300111
Erni B, Zanolari B: Glucose-permease of the bacterial phosphotransferase system. Gene cloning, overproduction, and amino acid sequence of enzyme IIGlc. J Biol Chem. 1986 Dec 15;261(35):16398-403.
Pubmed: 3023349
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000984
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings