Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
GTP Degradation and Molybdenum Cofactor Biosynthesis
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-09-09
Last Updated: 2025-01-22
GTP, produced in the nucleotide de novo biosyntheis pathway, interacts with a water molecule through a GTP cyclohydrolase resulting in a formate, hydrogen ion and a 7,8-dihydroneopterin 3'-triphosphate. The latter compound interacts with a water molecule through a dihydroneopterin triphosphate pyrophosphohydrolase resulting in the release of a pyrophosphate, a hydrogen ion and a 7,8-dihydroneopterin 3'-phosphate. The latter compound interacts with water spontaneously resulting in the release of a phosphate and a 7,8 dihydroneopterin. The latter compound interacts with a dihydroneopterin aldolase resulting in the release of a glycolaldehyde and a 6-hydroxymethyl-7,8-dihydropterin. This compound then is then diphosphorylated by reacting with a ATP driven 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase resulting in the release of a hydrogen ion, an AMP and 6-hydroxymethyl-7,8-dihydropterin diphosphate.
GTP interacts with a cyclic pyranopterin monophosphate synthase resulting in the release of a diphosphate and a cyclic pyranopterin phosphate. The latter compound interacts with a thiocarboxylated small subunit of molybdopterin synthase (a protein) and a water molecule through a molybdopterin synthase resulting in the release of 4 hydrogen ions, 2 small subunits of molybdopterin synthase and a molybdopterin. The molybdopterin interacts with an ATP and a hydrogen ion through a molybdopterin adenylyltransferase resulting in the release of a diphosphate and a molybdopterin adenine dinucleotide. The latter compound is then metabolized by a hydrogen ion and a molybdate through a molybdopterin molybdenumtransferase resulting in the release of an AMP, a water molecule and a molybdopterin cofactor.
The molybdopterin cofactor can procede to the guanylyl molybdenum cofactor biosynthesis pathway or it can be metabolized into a cytidylyl molybdenum cofactor by interacting with a CTP and a hydrogen ion through a molybdenym cofactor cytidylyltransferase resulting in the release of a pyrophosphate and a cytidyllyl molybdenum cofactor
References
GTP Degradation and Molybdenum Cofactor Biosynthesis References
Gutzke G, Fischer B, Mendel RR, Schwarz G: Thiocarboxylation of molybdopterin synthase provides evidence for the mechanism of dithiolene formation in metal-binding pterins. J Biol Chem. 2001 Sep 28;276(39):36268-74. doi: 10.1074/jbc.M105321200. Epub 2001 Jul 17.
Pubmed: 11459846
Iobbi-Nivol C, Leimkuhler S: Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli. Biochim Biophys Acta. 2013 Aug-Sep;1827(8-9):1086-101. doi: 10.1016/j.bbabio.2012.11.007. Epub 2012 Nov 29.
Pubmed: 23201473
Mendel RR, Hansch R: Molybdoenzymes and molybdenum cofactor in plants. J Exp Bot. 2002 Aug;53(375):1689-98.
Pubmed: 12147719
Mendel RR: Molybdenum: biological activity and metabolism. Dalton Trans. 2005 Nov 7;(21):3404-9. doi: 10.1039/b505527j. Epub 2005 Sep 26.
Pubmed: 16234918
Mendel RR, Bittner F: Cell biology of molybdenum. Biochim Biophys Acta. 2006 Jul;1763(7):621-35. doi: 10.1016/j.bbamcr.2006.03.013. Epub 2006 May 12.
Pubmed: 16784786
Mendel RR: Molybdenum cofactor of higher plants: biosynthesis and molecular biology. Planta. 1997 Dec;203(4):399-405. doi: 10.1007/s004250050206.
Pubmed: 9421926
Nichols JD, Xiang S, Schindelin H, Rajagopalan KV: Mutational analysis of Escherichia coli MoeA: two functional activities map to the active site cleft. Biochemistry. 2007 Jan 9;46(1):78-86. doi: 10.1021/bi061551q.
Pubmed: 17198377
Pitterle DM, Johnson JL, Rajagopalan KV: In vitro synthesis of molybdopterin from precursor Z using purified converting factor. Role of protein-bound sulfur in formation of the dithiolene. J Biol Chem. 1993 Jun 25;268(18):13506-9.
Pubmed: 8514783
Pitterle DM, Rajagopalan KV: The biosynthesis of molybdopterin in Escherichia coli. Purification and characterization of the converting factor. J Biol Chem. 1993 Jun 25;268(18):13499-505.
Pubmed: 8514782
Rajagopalan KV, Johnson JL: The pterin molybdenum cofactors. J Biol Chem. 1992 May 25;267(15):10199-202.
Pubmed: 1587808
Santamaria-Araujo JA, Fischer B, Otte T, Nimtz M, Mendel RR, Wray V, Schwarz G: The tetrahydropyranopterin structure of the sulfur-free and metal-free molybdenum cofactor precursor. J Biol Chem. 2004 Apr 16;279(16):15994-9. doi: 10.1074/jbc.M311815200. Epub 2004 Feb 3.
Pubmed: 14761975
Bermingham A, Derrick JP: The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery. Bioessays. 2002 Jul;24(7):637-48. doi: 10.1002/bies.10114.
Pubmed: 12111724
Katzenmeier G, Schmid C, Kellermann J, Lottspeich F, Bacher A: Biosynthesis of tetrahydrofolate. Sequence of GTP cyclohydrolase I from Escherichia coli. Biol Chem Hoppe Seyler. 1991 Nov;372(11):991-7.
Pubmed: 1665332
Schmid C, Meining W, Weinkauf S, Bachmann L, Ritz H, Eberhardt S, Gimbel W, Werner T, Lahm HW, Nar H, et al.: Studies on GTP cyclohydrolase I of Escherichia coli. Adv Exp Med Biol. 1993;338:157-62. doi: 10.1007/978-1-4615-2960-6_30.
Pubmed: 8304099
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Sharples GJ, Lloyd RG: Resolution of Holliday junctions in Escherichia coli: identification of the ruvC gene product as a 19-kilodalton protein. J Bacteriol. 1991 Dec;173(23):7711-5. doi: 10.1128/jb.173.23.7711-7715.1991.
Pubmed: 1657895
Takahagi M, Iwasaki H, Nakata A, Shinagawa H: Molecular analysis of the Escherichia coli ruvC gene, which encodes a Holliday junction-specific endonuclease. J Bacteriol. 1991 Sep;173(18):5747-53. doi: 10.1128/jb.173.18.5747-5753.1991.
Pubmed: 1885548
Itoh T, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Kasai H, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Seki Y, Horiuchi T, et al.: A 460-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 40.1-50.0 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):379-92. doi: 10.1093/dnares/3.6.379.
Pubmed: 9097040
Cain BD, Norton PJ, Eubanks W, Nick HS, Allen CM: Amplification of the bacA gene confers bacitracin resistance to Escherichia coli. J Bacteriol. 1993 Jun;175(12):3784-9. doi: 10.1128/jb.175.12.3784-3789.1993.
Pubmed: 8389741
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Talarico TL, Ray PH, Dev IK, Merrill BM, Dallas WS: Cloning, sequence analysis, and overexpression of Escherichia coli folK, the gene coding for 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase. J Bacteriol. 1992 Sep;174(18):5971-7. doi: 10.1128/jb.174.18.5971-5977.1992.
Pubmed: 1325970
Fujita N, Mori H, Yura T, Ishihama A: Systematic sequencing of the Escherichia coli genome: analysis of the 2.4-4.1 min (110,917-193,643 bp) region. Nucleic Acids Res. 1994 May 11;22(9):1637-9. doi: 10.1093/nar/22.9.1637.
Pubmed: 8202364
Rivers SL, McNairn E, Blasco F, Giordano G, Boxer DH: Molecular genetic analysis of the moa operon of Escherichia coli K-12 required for molybdenum cofactor biosynthesis. Mol Microbiol. 1993 Jun;8(6):1071-81. doi: 10.1111/j.1365-2958.1993.tb01652.x.
Pubmed: 8361352
Oshima T, Aiba H, Baba T, Fujita K, Hayashi K, Honjo A, Ikemoto K, Inada T, Itoh T, Kajihara M, Kanai K, Kashimoto K, Kimura S, Kitagawa M, Makino K, Masuda S, Miki T, Mizobuchi K, Mori H, Motomura K, Nakamura Y, Nashimoto H, Nishio Y, Saito N, Horiuchi T, et al.: A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map. DNA Res. 1996 Jun 30;3(3):137-55. doi: 10.1093/dnares/3.3.137.
Pubmed: 8905232
James R, Dean DO, Debbage J: Five open reading frames upstream of the dnaK gene of E. coli. DNA Seq. 1993;3(5):327-32.
Pubmed: 8400364
Yura T, Mori H, Nagai H, Nagata T, Ishihama A, Fujita N, Isono K, Mizobuchi K, Nakata A: Systematic sequencing of the Escherichia coli genome: analysis of the 0-2.4 min region. Nucleic Acids Res. 1992 Jul 11;20(13):3305-8. doi: 10.1093/nar/20.13.3305.
Pubmed: 1630901
Nohno T, Kasai Y, Saito T: Cloning and sequencing of the Escherichia coli chlEN operon involved in molybdopterin biosynthesis. J Bacteriol. 1988 Sep;170(9):4097-102. doi: 10.1128/jb.170.9.4097-4102.1988.
Pubmed: 3045084
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0001902
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings