
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
L-Glutamate Metabolism
Escherichia coli O6:H1 (strain CFT073 / ATCC 700928 / UPEC)
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2025-03-12
Last Updated: 2025-05-08
There are various ways by which glutamate enters the cytoplasm in E.coli, such as through a glutamate:sodium symporter, glutamate / aspartate : H+ symporter GltP or a
glutamate / aspartate ABC transporter. Similarly, there are various ways by which E. coli synthesizes glutamate from L-glutamine or oxoglutaric acid. L-glutamine, introduced into the cytoplasm by glutamine ABC transporter, can either interact with glutaminase resulting in ammonia and L-glutamic acid, or react with oxoglutaric acid, and hydrogen ion through an NADPH driven glutamate synthase resulting in L-glutamic acid. L-glutamic acid is metabolized into L-glutamine by reacting with ammonium through a ATP driven glutamine synthase. L-glutamic acid can also be metabolized into L-aspartic acid by reacting with oxalacetic acid through an aspartate transaminase resulting in an oxoglutaric acid and L-aspartic acid. L-aspartic acid is metabolized into fumaric acid through an aspartate ammonia-lyase. Fumaric acid can be introduced into the cytoplasm through 3 methods: dicarboxylate transporter, C4 dicarboxylate / C4 monocarboxylate transporter DauA, and C4 dicarboxylate / orotate:H+ symporter.
References
L-Glutamate Metabolism References
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu CF, Grishin NV, Zhao Y: Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics. 2009 Feb;8(2):215-25. doi: 10.1074/mcp.M800187-MCP200. Epub 2008 Aug 23.
Pubmed: 18723842
McPherson MJ, Wootton JC: Complete nucleotide sequence of the Escherichia coli gdhA gene. Nucleic Acids Res. 1983 Aug 11;11(15):5257-66. doi: 10.1093/nar/11.15.5257.
Pubmed: 6308576
Jones KM, McPherson MJ, Baron AJ, Mattaj IW, Riordan CL, Wootton JC: The gdhA1 point mutation in Escherichia coli K12 CLR207 alters a key lysine residue of glutamate dehydrogenase. Mol Gen Genet. 1993 Aug;240(2):286-9. doi: 10.1007/bf00277068.
Pubmed: 8355660
Valle F, Becerril B, Chen E, Seeburg P, Heyneker H, Bolivar F: Complete nucleotide sequence of the glutamate dehydrogenase gene from Escherichia coli K-12. Gene. 1984 Feb;27(2):193-9. doi: 10.1016/0378-1119(84)90140-9.
Pubmed: 6373501
Woods SA, Miles JS, Roberts RE, Guest JR: Structural and functional relationships between fumarase and aspartase. Nucleotide sequences of the fumarase (fumC) and aspartase (aspA) genes of Escherichia coli K12. Biochem J. 1986 Jul 15;237(2):547-57. doi: 10.1042/bj2370547.
Pubmed: 3541901
Takagi JS, Ida N, Tokushige M, Sakamoto H, Shimura Y: Cloning and nucleotide sequence of the aspartase gene of Escherichia coli W. Nucleic Acids Res. 1985 Mar 25;13(6):2063-74. doi: 10.1093/nar/13.6.2063.
Pubmed: 2987841
Burland V, Plunkett G 3rd, Sofia HJ, Daniels DL, Blattner FR: Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res. 1995 Jun 25;23(12):2105-19. doi: 10.1093/nar/23.12.2105.
Pubmed: 7610040
Waterman SR, Small PL: Transcriptional expression of Escherichia coli glutamate-dependent acid resistance genes gadA and gadBC in an hns rpoS mutant. J Bacteriol. 2003 Aug;185(15):4644-7. doi: 10.1128/jb.185.15.4644-4647.2003.
Pubmed: 12867478
Smith DK, Kassam T, Singh B, Elliott JF: Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci. J Bacteriol. 1992 Sep;174(18):5820-6. doi: 10.1128/jb.174.18.5820-5826.1992.
Pubmed: 1522060
Maras B, Sweeney G, Barra D, Bossa F, John RA: The amino acid sequence of glutamate decarboxylase from Escherichia coli. Evolutionary relationship between mammalian and bacterial enzymes. Eur J Biochem. 1992 Feb 15;204(1):93-8. doi: 10.1111/j.1432-1033.1992.tb16609.x.
Pubmed: 1740158
Sofia HJ, Burland V, Daniels DL, Plunkett G 3rd, Blattner FR: Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids Res. 1994 Jul 11;22(13):2576-86. doi: 10.1093/nar/22.13.2576.
Pubmed: 8041620
Velazquez L, Camarena L, Reyes JL, Bastarrachea F: Mutations affecting the Shine-Dalgarno sequences of the untranslated region of the Escherichia coli gltBDF operon. J Bacteriol. 1991 May;173(10):3261-4. doi: 10.1128/jb.173.10.3261-3264.1991.
Pubmed: 1673677
Oliver G, Gosset G, Sanchez-Pescador R, Lozoya E, Ku LM, Flores N, Becerril B, Valle F, Bolivar F: Determination of the nucleotide sequence for the glutamate synthase structural genes of Escherichia coli K-12. Gene. 1987;60(1):1-11. doi: 10.1016/0378-1119(87)90207-1.
Pubmed: 3326786
Miranda-Rios J, Sanchez-Pescador R, Urdea M, Covarrubias AA: The complete nucleotide sequence of the glnALG operon of Escherichia coli K12. Nucleic Acids Res. 1987 Mar 25;15(6):2757-70. doi: 10.1093/nar/15.6.2757.
Pubmed: 2882477
Covarrubias AA, Bastarrachea F: Nucleotide sequence of the glnA control region of Escherichia coli. Mol Gen Genet. 1983;190(1):171-5. doi: 10.1007/bf00330342.
Pubmed: 6134228
Reitzer LJ, Magasanik B: Expression of glnA in Escherichia coli is regulated at tandem promoters. Proc Natl Acad Sci U S A. 1985 Apr;82(7):1979-83. doi: 10.1073/pnas.82.7.1979.
Pubmed: 2858855
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000811
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings