Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Lysine Biosynthesis
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-02-08
Last Updated: 2024-12-11
Lysine is biosynthesized from L-aspartic acid. L-Aspartic acid can be incorporated into the cell through various methods: C4 dicarboxylate/orotate:H+ symporter, glutamate/aspartate:H+ symporter GltP, dicarboxylate transporter, C4 dicarboxylate/C4 monocarboxylate transporter DauA, and glutamate/aspartate ABC transporter. L-Aspartic acid is phosphorylated by an ATP-driven aspartate kinase resulting in ADP and L-aspartyl-4-phosphate. L-Aspartyl-4-phosphate is then dehydrogenated through an NADPH-driven aspartate semialdehyde dehydrogenase resulting in a release of phosphate, NADP, and L-aspartic 4-semialdehyde (involved in methionine biosynthesis). L-Aspartic 4-semialdehyde interacts with a pyruvic acid through a 4-hydroxy-tetrahydrodipicolinate synthase resulting in a release of hydrogen ion, water, and (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate. The latter compound is then reduced by an NADPH-driven 4-hydroxy-tetrahydrodipicolinate reductase resulting in a release of water, NADP, and (S)-2,3,4,5-tetrahydrodipicolinate, This compound interacts with succinyl-CoA and water through a tetrahydrodipicolinate succinylase resulting in a release of coenzyme A and N-succinyl-2-amino-6-ketopimelate. This compound interacts with L-glutamic acid through an N-succinyldiaminopimelate aminotransferase resulting in oxoglutaric acid and N-succinyl-L,L-2,6-diaminopimelate. The latter compound is then desuccinylated by reacting with water through an N-succinyl-L-diaminopimelate desuccinylase resulting in a succinic acid and L,L-diaminopimelate. This compound is then isomerized through a diaminopimelate epimerase resulting in a meso-diaminopimelate (involved in peptidoglycan biosynthesis I). This compound is then decarboxylated by a diaminopimelate decarboxylase resulting in a release of carbon dioxide and L-lysine. L-Lysine is then incorporated into the lysine degradation pathway. Lysine also regulates its own biosynthesis by repressing dihydrodipicolinate synthase and also by repressing lysine-sensitive aspartokinase 3. Diaminopielate is a precursor for lysine as well as other cell wall components. Synthesis of lysine starts by converting L-aspartic acid (L-aspartate) to L-Aspartyl-4-phosphate by aspartate kinase. L-Aspartyl-4-phosphate transforms to form L-aspartic 4-semialdehyde (L-aspartate semialdehyde) by aspartate semialdehyde dehydrogenase with NADPH. L-aspartic 4-semialdehyde can start the metabolic pathway of synthesis of methionine as well as synthesis of threonine. Aspartate kinase can be regulated by its end product: L-Lysine.
References
Lysine Biosynthesis References
Acord J, Masters M: Expression from the Escherichia coli dapA promoter is regulated by intracellular levels of diaminopimelic acid. FEMS Microbiol Lett. 2004 Jun 1;235(1):131-7. doi: 10.1016/j.femsle.2004.04.022.
Pubmed: 15158272
Alvarez E, Ramon F, Magan C, Diez E: L-cystine inhibits aspartate-beta-semialdehyde dehydrogenase by covalently binding to the essential 135Cys of the enzyme. Biochim Biophys Acta. 2004 Jan 14;1696(1):23-9.
Pubmed: 14726201
Angeles TS, Viola RE: The kinetic mechanisms of the bifunctional enzyme aspartokinase-homoserine dehydrogenase I from Escherichia coli. Arch Biochem Biophys. 1990 Nov 15;283(1):96-101.
Pubmed: 2241177
ANTIA M, HOARE DS, WORK E: The stereoisomers of alpha epsilon-diaminopimelic acid. III. Properties and distribution of diaminopimelic acid racemase, an enzyme causing interconversion of the LL and meso isomers. Biochem J. 1957 Mar;65(3):448-59.
Pubmed: 13412646
Baumann RJ, Bohme EH, Wiseman JS, Vaal M, Nichols JS: Inhibition of Escherichia coli growth and diaminopimelic acid epimerase by 3-chlorodiaminopimelic acid. Antimicrob Agents Chemother. 1988 Aug;32(8):1119-23.
Pubmed: 3056252
Bearer CF, Neet KE: Threonine inhibition of the aspartokinase--homoserine dehydrogenase I of Escherichia coli. A slow transient and cooperativity of inhibition of the aspartokinase activity. Biochemistry. 1978 Aug 22;17(17):3523-30.
Pubmed: 28752
Berg CM, Rossi JJ: Proline excretion and indirect suppression in Escherichia coli and Salmonella typhimurium. J Bacteriol. 1974 Jun;118(3):928-34.
Pubmed: 4598010
Berges DA, DeWolf WE Jr, Dunn GL, Newman DJ, Schmidt SJ, Taggart JJ, Gilvarg C: Studies on the active site of succinyl-CoA:tetrahydrodipicolinate N-succinyltransferase. Characterization using analogs of tetrahydrodipicolinate. J Biol Chem. 1986 May 15;261(14):6160-7.
Pubmed: 3700390
Biellmann JF, Eid P, Hirth C, Jornvall H: Aspartate-beta-semialdehyde dehydrogenase from Escherichia coli. Purification and general properties. Eur J Biochem. 1980 Feb;104(1):53-8.
Pubmed: 6102909
Biellmann JF, Eid P, Hirth C: Affinity labeling of the Escherichia coli aspartate-beta-semialdehyde dehydrogenase with an alkylating coenzyme analogue. Half-site reactivity and competition with the substrate alkylating analogue. Eur J Biochem. 1980 Feb;104(1):65-9.
Pubmed: 6102911
Billheimer JT, Shen MY, Carnevale HN, Horton HR, Jones EE: Isolation and characterization of acetylornithine delta-transaminase of wild-type Escherichia coli W. Comparison with arginine-inducible acetylornithine delta-transaminase. Arch Biochem Biophys. 1979 Jul;195(2):401-13.
Pubmed: 112925
Blickling S, Renner C, Laber B, Pohlenz HD, Holak TA, Huber R: Reaction mechanism of Escherichia coli dihydrodipicolinate synthase investigated by X-ray crystallography and NMR spectroscopy. Biochemistry. 1997 Jan 7;36(1):24-33. doi: 10.1021/bi962272d.
Pubmed: 8993314
Borthwick EB, Connell SJ, Tudor DW, Robins DJ, Shneier A, Abell C, Coggins JR: Escherichia coli dihydrodipicolinate synthase: characterization of the imine intermediate and the product of bromopyruvate treatment by electrospray mass spectrometry. Biochem J. 1995 Jan 15;305 ( Pt 2):521-4.
Pubmed: 7832769
Boughton BA, Dobson RC, Hutton CA: The crystal structure of dihydrodipicolinate synthase from Escherichia coli with bound pyruvate and succinic acid semialdehyde: unambiguous resolution of the stereochemistry of the condensation product. Proteins. 2012 Aug;80(8):2117-22. doi: 10.1002/prot.24106. Epub 2012 Jun 4.
Pubmed: 22552955
Boughton BA, Hor L, Gerrard JA, Hutton CA: 1,3-Phenylene bis(ketoacid) derivatives as inhibitors of Escherichia coli dihydrodipicolinate synthase. Bioorg Med Chem. 2012 Apr 1;20(7):2419-26. doi: 10.1016/j.bmc.2012.01.045. Epub 2012 Feb 10.
Pubmed: 22386717
Bouvier J, Stragier P, Morales V, Remy E, Gutierrez C: Lysine represses transcription of the Escherichia coli dapB gene by preventing its activation by the ArgP activator. J Bacteriol. 2008 Aug;190(15):5224-9. doi: 10.1128/JB.01782-07. Epub 2008 May 23.
Pubmed: 18502871
Bouvier J, Richaud C, Richaud F, Patte JC, Stragier P: Nucleotide sequence and expression of the Escherichia coli dapB gene. J Biol Chem. 1984 Dec 10;259(23):14829-34.
Pubmed: 6094578
Bouvier J, Richaud C, Higgins W, Bogler O, Stragier P: Cloning, characterization, and expression of the dapE gene of Escherichia coli. J Bacteriol. 1992 Aug;174(16):5265-71.
Pubmed: 1644752
Boy E, Patte JC: Multivalent repression of aspartic semialdehyde dehydrogenase in Escherichia coli K-12. J Bacteriol. 1972 Oct;112(1):84-92.
Pubmed: 4404058
Boy E, Reinisch F, Richaud C, Patte JC: Role of lysyl-tRNA in the regulation of lysine biosynthesis in Escherichia coli K12. Biochimie. 1976;58(1-2):213-8.
Pubmed: 8152
Cassan M, Parsot C, Cohen GN, Patte JC: Nucleotide sequence of lysC gene encoding the lysine-sensitive aspartokinase III of Escherichia coli K12. Evolutionary pathway leading to three isofunctional enzymes. J Biol Chem. 1986 Jan 25;261(3):1052-7.
Pubmed: 3003049
Cassan M, Ronceray J, Patte JC: Nucleotide sequence of the promoter region of the E. coli lysC gene. Nucleic Acids Res. 1983 Sep 24;11(18):6157-66. doi: 10.1093/nar/11.18.6157.
Pubmed: 6312411
Blattner FR, Burland V, Plunkett G 3rd, Sofia HJ, Daniels DL: Analysis of the Escherichia coli genome. IV. DNA sequence of the region from 89.2 to 92.8 minutes. Nucleic Acids Res. 1993 Nov 25;21(23):5408-17. doi: 10.1093/nar/21.23.5408.
Pubmed: 8265357
Haziza C, Stragier P, Patte JC: Nucleotide sequence of the asd gene of Escherichia coli: absence of a typical attenuation signal. EMBO J. 1982;1(3):379-84.
Pubmed: 6143662
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Richaud F, Richaud C, Ratet P, Patte JC: Chromosomal location and nucleotide sequence of the Escherichia coli dapA gene. J Bacteriol. 1986 Apr;166(1):297-300. doi: 10.1128/jb.166.1.297-300.1986.
Pubmed: 3514578
Yamamoto Y, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kimura S, Kitagawa M, Makino K, Miki T, Mitsuhashi N, Mizobuchi K, Mori H, Nakade S, Nakamura Y, Nashimoto H, Oshima T, Oyama S, Saito N, Sampei G, Satoh Y, Sivasundaram S, Tagami H, Horiuchi T, et al.: Construction of a contiguous 874-kb sequence of the Escherichia coli -K12 genome corresponding to 50.0-68.8 min on the linkage map and analysis of its sequence features. DNA Res. 1997 Apr 28;4(2):91-113. doi: 10.1093/dnares/4.2.91.
Pubmed: 9205837
Yura T, Mori H, Nagai H, Nagata T, Ishihama A, Fujita N, Isono K, Mizobuchi K, Nakata A: Systematic sequencing of the Escherichia coli genome: analysis of the 0-2.4 min region. Nucleic Acids Res. 1992 Jul 11;20(13):3305-8. doi: 10.1093/nar/20.13.3305.
Pubmed: 1630901
Richaud C, Richaud F, Martin C, Haziza C, Patte JC: Regulation of expression and nucleotide sequence of the Escherichia coli dapD gene. J Biol Chem. 1984 Dec 10;259(23):14824-8.
Pubmed: 6094577
Fujita N, Mori H, Yura T, Ishihama A: Systematic sequencing of the Escherichia coli genome: analysis of the 2.4-4.1 min (110,917-193,643 bp) region. Nucleic Acids Res. 1994 May 11;22(9):1637-9. doi: 10.1093/nar/22.9.1637.
Pubmed: 8202364
Heimberg H, Boyen A, Crabeel M, Glansdorff N: Escherichia coli and Saccharomyces cerevisiae acetylornithine aminotransferase: evolutionary relationship with ornithine aminotransferase. Gene. 1990 May 31;90(1):69-78. doi: 10.1016/0378-1119(90)90440-3.
Pubmed: 2199330
Bouvier J, Richaud C, Higgins W, Bogler O, Stragier P: Cloning, characterization, and expression of the dapE gene of Escherichia coli. J Bacteriol. 1992 Aug;174(16):5265-71. doi: 10.1128/jb.174.16.5265-5271.1992.
Pubmed: 1644752
Wu B, Georgopoulos C, Ang D: The essential Escherichia coli msgB gene, a multicopy suppressor of a temperature-sensitive allele of the heat shock gene grpE, is identical to dapE. J Bacteriol. 1992 Aug;174(16):5258-64. doi: 10.1128/jb.174.16.5258-5264.1992.
Pubmed: 1644751
Richaud C, Higgins W, Mengin-Lecreulx D, Stragier P: Molecular cloning, characterization, and chromosomal localization of dapF, the Escherichia coli gene for diaminopimelate epimerase. J Bacteriol. 1987 Apr;169(4):1454-9. doi: 10.1128/jb.169.4.1454-1459.1987.
Pubmed: 3031013
Mengin-Lecreulx D, Michaud C, Richaud C, Blanot D, van Heijenoort J: Incorporation of LL-diaminopimelic acid into peptidoglycan of Escherichia coli mutants lacking diaminopimelate epimerase encoded by dapF. J Bacteriol. 1988 May;170(5):2031-9. doi: 10.1128/jb.170.5.2031-2039.1988.
Pubmed: 3283102
Richaud C, Printz C: Nucleotide sequence of the dapF gene and flanking regions from Escherichia coli K12. Nucleic Acids Res. 1988 Nov 11;16(21):10367. doi: 10.1093/nar/16.21.10367.
Pubmed: 3057443
Stragier P, Danos O, Patte JC: Regulation of diaminopimelate decarboxylase synthesis in Escherichia coli. II. Nucleotide sequence of the lysA gene and its regulatory region. J Mol Biol. 1983 Aug 5;168(2):321-31. doi: 10.1016/s0022-2836(83)80021-7.
Pubmed: 6350601
Stragier P, Borne F, Richaud F, Richaud C, Patte JC: Regulatory pattern of the Escherichia coli lysA gene: expression of chromosomal lysA-lacZ fusions. J Bacteriol. 1983 Dec;156(3):1198-203.
Pubmed: 6417111
Stragier P, Richaud F, Borne F, Patte JC: Regulation of diaminopimelate decarboxylase synthesis in Escherichia coli. I. Identification of a lysR gene encoding an activator of the lysA gene. J Mol Biol. 1983 Aug 5;168(2):307-20. doi: 10.1016/s0022-2836(83)80020-5.
Pubmed: 6411928
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000794
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings