Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
D-Glucarate and D-Galactarate Degradation
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-03-03
Last Updated: 2024-12-15
Galactarate is a naturally occurring dicarboxylic acid analog of D-galactose. E. coli can use both diacid sugars galactarate and D-glucarate as the sole source of carbon for growth. The initial step in the degradation of galactarate is its dehydration to 5-dehydro-4-deoxy-D-glucarate(2--) by galactarate dehydratase. Glucaric acid can also be dehydrated by a glucarate dehydratase resulting in water and 5-dehydro-4-deoxy-D-glucarate(2--). The 5-dehydro-4-deoxy-D-glucarate(2--) is then metabolized by a alpha-dehydro-beta-deoxy-D-glucarate aldolase resulting in pyruvic acid and a tartonate semialdehyde. Pyruvic acid interacts with coenzyme A through a NAD driven Pyruvate dehydrogenase complex resulting in a carbon dioxide, an NADH and an acetyl-CoA. The tartronate semialdehyde interacts with a hydrogen ion through a NADPH driven tartronate semialdehyde reductase resulting in a NADP and a glyceric acid. The glyceric acid is phosphorylated by an ATP-driven glycerate kinase 2 resulting in an ADP, a hydrogen ion and a 2-phosphoglyceric acid. The latter compound is dehydrated by an enolase resulting in the release of water and a phosphoenolpyruvic acid. The phosphoenolpyruvic acid interacts with a hydrogen ion through an ADP driven pyruvate kinase resulting in an ATP and a pyruvic acid. The pyruvic acid then interacts with water and an ATP through a phosphoenolpyruvate synthetase resulting in the release of a hydrogen ion, a phosphate, an AMP and a Phosphoenolpyruvic acid.
References
D-Glucarate and D-Galactarate Degradation References
Blackwell NC, Cullis PM, Cooper RA, Izard T: Rhombohedral crystals of 2-dehydro-3-deoxygalactarate aldolase from Escherichia coli. Acta Crystallogr D Biol Crystallogr. 1999 Jul;55(Pt 7):1368-9.
Pubmed: 10393309
Blumenthal HJ, Jepson T: Asymmetric dehydration of galactarate by bacterial galactarate dehydratase. Biochem Biophys Res Commun. 1964 Oct 14;17(3):282-7.
Pubmed: 4285952
Hubbard BK, Koch M, Palmer DR, Babbitt PC, Gerlt JA: Evolution of enzymatic activities in the enolase superfamily: characterization of the (D)-glucarate/galactarate catabolic pathway in Escherichia coli. Biochemistry. 1998 Oct 13;37(41):14369-75. doi: 10.1021/bi981124f.
Pubmed: 9772162
Izard T, Blackwell NC: Crystal structures of the metal-dependent 2-dehydro-3-deoxy-galactarate aldolase suggest a novel reaction mechanism. EMBO J. 2000 Aug 1;19(15):3849-56. doi: 10.1093/emboj/19.15.3849.
Pubmed: 10921867
Monterrubio R, Baldoma L, Obradors N, Aguilar J, Badia J: A common regulator for the operons encoding the enzymes involved in D-galactarate, D-glucarate, and D-glycerate utilization in Escherichia coli. J Bacteriol. 2000 May;182(9):2672-4.
Pubmed: 10762278
Njau RK, Herndon CA, Hawes JW: Novel beta -hydroxyacid dehydrogenases in Escherichia coli and Haemophilus influenzae. J Biol Chem. 2000 Dec 8;275(49):38780-6. doi: 10.1074/jbc.M007432200.
Pubmed: 10978349
Ornston MK, Ornston LN: Two forms of D-glycerate kinase in Escherichia coli. J Bacteriol. 1969 Mar;97(3):1227-33.
Pubmed: 4887503
Rea D, Hovington R, Rakus JF, Gerlt JA, Fulop V, Bugg TD, Roper DI: Crystal structure and functional assignment of YfaU, a metal ion dependent class II aldolase from Escherichia coli K12. Biochemistry. 2008 Sep 23;47(38):9955-65. doi: 10.1021/bi800943g. Epub 2008 Aug 29.
Pubmed: 18754683
Roberton AM, Sullivan PA, Jones-Mortimer MC, Kornberg HL: Two genes affecting glucarate utilization in Escherichia coli K12. J Gen Microbiol. 1980 Apr;117(2):377-82. doi: 10.1099/00221287-117-2-377.
Pubmed: 6999115
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Baird L, Georgopoulos C: Identification, cloning, and characterization of the Escherichia coli sohA gene, a suppressor of the htrA (degP) null phenotype. J Bacteriol. 1990 Mar;172(3):1587-94. doi: 10.1128/jb.172.3.1587-1594.1990.
Pubmed: 2407727
Yamamoto Y, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kimura S, Kitagawa M, Makino K, Miki T, Mitsuhashi N, Mizobuchi K, Mori H, Nakade S, Nakamura Y, Nashimoto H, Oshima T, Oyama S, Saito N, Sampei G, Satoh Y, Sivasundaram S, Tagami H, Horiuchi T, et al.: Construction of a contiguous 874-kb sequence of the Escherichia coli -K12 genome corresponding to 50.0-68.8 min on the linkage map and analysis of its sequence features. DNA Res. 1997 Apr 28;4(2):91-113. doi: 10.1093/dnares/4.2.91.
Pubmed: 9205837
Komine Y, Inokuchi H: Precise mapping of the rnpB gene encoding the RNA component of RNase P in Escherichia coli K-12. J Bacteriol. 1991 Mar;173(5):1813-6. doi: 10.1128/jb.173.5.1813-1816.1991.
Pubmed: 1705543
Spring TG, Wold F: The purification and characterization of Escherichia coli enolase. J Biol Chem. 1971 Nov 25;246(22):6797-802.
Pubmed: 4942326
Dannelly HK, Duclos B, Cozzone AJ, Reeves HC: Phosphorylation of Escherichia coli enolase. Biochimie. 1989 Sep-Oct;71(9-10):1095-100. doi: 10.1016/0300-9084(89)90116-8.
Pubmed: 2513001
Chandran V, Luisi BF: Recognition of enolase in the Escherichia coli RNA degradosome. J Mol Biol. 2006 Apr 21;358(1):8-15. doi: 10.1016/j.jmb.2006.02.012. Epub 2006 Feb 21.
Pubmed: 16516921
Ohara O, Dorit RL, Gilbert W: Direct genomic sequencing of bacterial DNA: the pyruvate kinase I gene of Escherichia coli. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6883-7. doi: 10.1073/pnas.86.18.6883.
Pubmed: 2674937
Hensel M, Shea JE, Baumler AJ, Gleeson C, Blattner F, Holden DW: Analysis of the boundaries of Salmonella pathogenicity island 2 and the corresponding chromosomal region of Escherichia coli K-12. J Bacteriol. 1997 Feb;179(4):1105-11. doi: 10.1128/jb.179.4.1105-1111.1997.
Pubmed: 9023191
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000816
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings