Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Serine Biosynthesis and Metabolism
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-03-15
Last Updated: 2019-08-13
Serine biosynthesis is a major metabolic pathway in E. coli. Its end product, serine, is not only used in protein synthesis, but also as a precursor for the biosynthesis of glycine, cysteine, tryptophan, and phospholipids. In addition, it directly or indirectly serves as a source of one-carbon units for the biosynthesis of various compounds.
The biosynthesis of serine starts with 3-phosphoglyceric acid being metabolized by a NAD driven D-3-phosphoglycerate dehydrogenase / α-ketoglutarate reductase resulting in the release of a NADH, a hydrogen ion and a phosphohydroxypyruvic acid. The latter compound then interacts with an L-glutamic acid through a 3-phosphoserine aminotransferase / phosphohydroxythreonine aminotransferase resulting in oxoglutaric acid and DL-D-phosphoserine.
The DL-D-phosphoserine can also be imported into the cytoplasm through a phosphonate ABC transporter. The DL-D-phosphoserine is dephosphorylated by interacting with a water molecule through a phosphoserine phosphatase resulting in the release of a phosphate and an L-serine
L-serine is then metabolized by being dehydrated through either a L-serine dehydratase 2 or a L-serine dehydratase 1 resulting in the release of a water molecule, a hydrogen ion and a 2-aminoacrylic acid. The latter compound is an isomer of a 2-iminopropanoate which reacts spontaneously with a water molecule and a hydrogen ion resulting in the release of Ammonium and pyruvic acid. Pyruvic acid then interacts with a coenzyme A through a NAD driven pyruvate dehydrogenase complex resulting in the release of a NADH, a carbon dioxide and an acetyl-CoA.
References
Serine Biosynthesis and Metabolism References
Alfoldi L, Rasko I, Kerekes E: L-serine deaminase of Escherichia coli. J Bacteriol. 1968 Nov;96(5):1512-8.
Pubmed: 4882014
Escherichia coli and Salmonella: Cellular and Molecular Biology (EcoSal). Online edition.
Smallbone K, Stanford NJ: Kinetic modeling of metabolic pathways: application to serine biosynthesis. Methods Mol Biol. 2013;985:113-21. doi: 10.1007/978-1-62703-299-5_7.
Pubmed: 23417802
Tobey KL, Grant GA: The nucleotide sequence of the serA gene of Escherichia coli and the amino acid sequence of the encoded protein, D-3-phosphoglycerate dehydrogenase. J Biol Chem. 1986 Sep 15;261(26):12179-83.
Pubmed: 3017965
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Duncan K, Coggins JR: The serC-aro A operon of Escherichia coli. A mixed function operon encoding enzymes from two different amino acid biosynthetic pathways. Biochem J. 1986 Feb 15;234(1):49-57. doi: 10.1042/bj2340049.
Pubmed: 3518706
Drewke C, Klein M, Clade D, Arenz A, Muller R, Leistner E: 4-O-phosphoryl-L-threonine, a substrate of the pdxC(serC) gene product involved in vitamin B6 biosynthesis. FEBS Lett. 1996 Jul 22;390(2):179-82. doi: 10.1016/0014-5793(96)00652-7.
Pubmed: 8706854
Oshima T, Aiba H, Baba T, Fujita K, Hayashi K, Honjo A, Ikemoto K, Inada T, Itoh T, Kajihara M, Kanai K, Kashimoto K, Kimura S, Kitagawa M, Makino K, Masuda S, Miki T, Mizobuchi K, Mori H, Motomura K, Nakamura Y, Nashimoto H, Nishio Y, Saito N, Horiuchi T, et al.: A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map. DNA Res. 1996 Jun 30;3(3):137-55. doi: 10.1093/dnares/3.3.137.
Pubmed: 8905232
Neuwald AF, Stauffer GV: DNA sequence and characterization of the Escherichia coli serB gene. Nucleic Acids Res. 1985 Oct 11;13(19):7025-39. doi: 10.1093/nar/13.19.7025.
Pubmed: 2997734
Burland V, Plunkett G 3rd, Sofia HJ, Daniels DL, Blattner FR: Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res. 1995 Jun 25;23(12):2105-19. doi: 10.1093/nar/23.12.2105.
Pubmed: 7610040
Durfee T, Nelson R, Baldwin S, Plunkett G 3rd, Burland V, Mau B, Petrosino JF, Qin X, Muzny DM, Ayele M, Gibbs RA, Csorgo B, Posfai G, Weinstock GM, Blattner FR: The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J Bacteriol. 2008 Apr;190(7):2597-606. doi: 10.1128/JB.01695-07. Epub 2008 Feb 1.
Pubmed: 18245285
Shao Z, Lin RT, Newman EB: Sequencing and characterization of the sdaC gene and identification of the sdaCB operon in Escherichia coli K12. Eur J Biochem. 1994 Jun 15;222(3):901-7. doi: 10.1111/j.1432-1033.1994.tb18938.x.
Pubmed: 8026499
Shao Z, Newman EB: Sequencing and characterization of the sdaB gene from Escherichia coli K-12. Eur J Biochem. 1993 Mar 15;212(3):777-84. doi: 10.1111/j.1432-1033.1993.tb17718.x.
Pubmed: 8385012
Su HS, Lang BF, Newman EB: L-serine degradation in Escherichia coli K-12: cloning and sequencing of the sdaA gene. J Bacteriol. 1989 Sep;171(9):5095-102. doi: 10.1128/jb.171.9.5095-5102.1989.
Pubmed: 2504697
Su H, Moniakis J, Newman EB: Use of gene fusions of the structural gene sdaA to purify L-serine deaminase 1 from Escherichia coli K-12. Eur J Biochem. 1993 Feb 1;211(3):521-7. doi: 10.1111/j.1432-1033.1993.tb17578.x.
Pubmed: 8436113
Itoh T, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Kasai H, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Seki Y, Horiuchi T, et al.: A 460-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 40.1-50.0 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):379-92. doi: 10.1093/dnares/3.6.379.
Pubmed: 9097040
Misumi Y, Ogata S, Ohkubo K, Hirose S, Ikehara Y: Primary structure of human placental 5'-nucleotidase and identification of the glycolipid anchor in the mature form. Eur J Biochem. 1990 Aug 17;191(3):563-9. doi: 10.1111/j.1432-1033.1990.tb19158.x.
Pubmed: 2129526
Hansen KR, Resta R, Webb CF, Thompson LF: Isolation and characterization of the promoter of the human 5'-nucleotidase (CD73)-encoding gene. Gene. 1995 Dec 29;167(1-2):307-12. doi: 10.1016/0378-1119(95)00574-9.
Pubmed: 8566797
Knapp K, Zebisch M, Pippel J, El-Tayeb A, Muller CE, Strater N: Crystal structure of the human ecto-5'-nucleotidase (CD73): insights into the regulation of purinergic signaling. Structure. 2012 Dec 5;20(12):2161-73. doi: 10.1016/j.str.2012.10.001. Epub 2012 Nov 8.
Pubmed: 23142347
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings