Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Chorismate Biosynthesis
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-03-22
Last Updated: 2024-12-22
Chorismate is an intermediate in tyrosine, phenylalanine and tryptophan synthesis and a precursor for folic acid, ubiquinone, enterochelin and menaquinone. Three enzymes catalyze the first step in chorismate biosynthesis. Synthesis may be reduced by feedback inhibition of tyrosine, phenylalanine and tryptophan to the enzymes. The biosynthesis of chorismate starts with D-Erythrose-4-phosphate getting transformed into 3-deoxy-D-arabino-heptulosonate-7-phosphate through a phospho-2-dehydro-3-deoxyheptonate aldolase. This is followed by a 3-dehydroquinate synthase converting the 3-deoxy-D-arabino-heptulosonate-7-phosphate into a 3-dehydroquinate which in turn is conveted to 3-dehydroshikimate through a 3-dehydroquinate dehydratase. At this point 3-dehydroshikimate can be turned into Shikimic acid through 2 different reactions involving Quinate/shikimate dehydrogenase and shikimate dehydrogenase 2. Shikimic acid is phosphorylated by Shikimate kinase 2 into shikimate 3-phosphate. Shikimate 3- phophate and a phosphoenolpyruvic acid are then joined through a 3-phosphoshikimate 1-carboxyvinyltransferase to produce a 5-enoylpyruvyl-shikimate 3-phosphate while releasing a phosphate. This in turn produces our final product Chorismate through a chorismate synthase.
References
Chorismate Biosynthesis References
Abdel-Meguid SS, Smith WW, Bild GS: Crystallization of 5-enolpyruvylshikimate 3-phosphate synthase from Escherichia coli. J Mol Biol. 1985 Dec 5;186(3):673.
Pubmed: 3912512
Akowski JP, Bauerle R: Steady-state kinetics and inhibitor binding of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (tryptophan sensitive) from Escherichia coli. Biochemistry. 1997 Dec 16;36(50):15817-22. doi: 10.1021/bi971135t.
Pubmed: 9398312
Anderson KS, Sikorski JA, Johnson KA: Evaluation of 5-enolpyruvoylshikimate-3-phosphate synthase substrate and inhibitor binding by stopped-flow and equilibrium fluorescence measurements. Biochemistry. 1988 Mar 8;27(5):1604-10.
Pubmed: 3284585
Anton IA, Coggins JR: Sequencing and overexpression of the Escherichia coli aroE gene encoding shikimate dehydrogenase. Biochem J. 1988 Jan 15;249(2):319-26.
Pubmed: 3277621
Arifuzzaman M, Maeda M, Itoh A, Nishikata K, Takita C, Saito R, Ara T, Nakahigashi K, Huang HC, Hirai A, Tsuzuki K, Nakamura S, Altaf-Ul-Amin M, Oshima T, Baba T, Yamamoto N, Kawamura T, Ioka-Nakamichi T, Kitagawa M, Tomita M, Kanaya S, Wada C, Mori H: Large-scale identification of protein-protein interaction of Escherichia coli K-12. Genome Res. 2006 May;16(5):686-91. doi: 10.1101/gr.4527806. Epub 2006 Apr 10.
Pubmed: 16606699
Baasov T, Knowles JR: Is the first enzyme of the shikimate pathway, 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (tyrosine sensitive), a copper metalloenzyme? J Bacteriol. 1989 Nov;171(11):6155-60.
Pubmed: 2572582
Benach J, Lee I, Edstrom W, Kuzin AP, Chiang Y, Acton TB, Montelione GT, Hunt JF: The 2.3-A crystal structure of the shikimate 5-dehydrogenase orthologue YdiB from Escherichia coli suggests a novel catalytic environment for an NAD-dependent dehydrogenase. J Biol Chem. 2003 May 23;278(21):19176-82. doi: 10.1074/jbc.M301348200. Epub 2003 Mar 6.
Pubmed: 12624088
Bender SL, Mehdi S, Knowles JR: Dehydroquinate synthase: the role of divalent metal cations and of nicotinamide adenine dinucleotide in catalysis. Biochemistry. 1989 Sep 19;28(19):7555-60.
Pubmed: 2514789
Berlyn MB, Giles NH: Organization of enzymes in the polyaromatic synthetic pathway: separability in bacteria. J Bacteriol. 1969 Jul;99(1):222-30.
Pubmed: 4979440
Berti PJ, Chindemi P: Catalytic residues and an electrostatic sandwich that promote enolpyruvyl shikimate 3-phosphate synthase (AroA) catalysis. Biochemistry. 2009 May 5;48(17):3699-707. doi: 10.1021/bi802251s.
Pubmed: 19271774
Bondinell WE, Vnek J, Knowles PF, Sprecher M, Sprinson DB: On the mechanism of 5-enolpyruvylshikimate 3-phosphate synthetase. J Biol Chem. 1971 Oct 25;246(20):6191-6.
Pubmed: 4942558
Bornemann S, Theoclitou ME, Brune M, Webb MR, Thorneley RN, Abell C: A Secondary beta Deuterium Kinetic Isotope Effect in the Chorismate Synthase Reaction. Bioorg Chem. 2000 Aug;28(4):191-204. doi: 10.1006/bioo.2000.1174.
Pubmed: 11034781
Bornemann S: Flavoenzymes that catalyse reactions with no net redox change. Nat Prod Rep. 2002 Dec;19(6):761-72.
Pubmed: 12521268
Bornemann S, Balasubramanian S, Coggins JR, Abell C, Lowe DJ, Thorneley RN: Escherichia coli chorismate synthase: a deuterium kinetic-isotope effect under single-turnover and steady-state conditions shows that a flavin intermediate forms before the C-(6proR)-H bond is cleaved. Biochem J. 1995 Feb 1;305 ( Pt 3):707-10.
Pubmed: 7848266
Bornemann S, Ramjee MK, Balasubramanian S, Abell C, Coggins JR, Lowe DJ, Thorneley RN: Escherichia coli chorismate synthase catalyzes the conversion of (6S)-6-fluoro-5-enolpyruvylshikimate-3-phosphate to 6-fluorochorismate. Implications for the enzyme mechanism and the antimicrobial action of (6S)-6-fluoroshikimate. J Biol Chem. 1995 Sep 29;270(39):22811-5.
Pubmed: 7559411
Bornemann S, Lowe DJ, Thorneley RN: The transient kinetics of Escherichia coli chorismate synthase: substrate consumption, product formation, phosphate dissociation, and characterization of a flavin intermediate. Biochemistry. 1996 Jul 30;35(30):9907-16. doi: 10.1021/bi952958q.
Pubmed: 8703965
Bornemann S, Lowe DJ, Thorneley RN: Escherichia coli chorismate synthase. Biochem Soc Trans. 1996 Feb;24(1):84-8.
Pubmed: 8674765
Camakaris J, Pittard J: Repression of 3-deoxy-D-arabinoheptulosonic acid-7-phosphate synthetase (trp) and enzymes of the tryptophan pathway in Escherichia coli K-12. J Bacteriol. 1971 Aug;107(2):406-14.
Pubmed: 4939760
Camakaris J, Pittard J: Purification and properties of 3-deoxy-D-arabionheptulosonic acid-7-phosphate synthetase (trp) from Escherichia coli. J Bacteriol. 1974 Nov;120(2):590-7.
Pubmed: 4218228
Garner CC, Herrmann KM: Operator mutations of the Escherichia coli aroF gene. J Biol Chem. 1985 Mar 25;260(6):3820-5.
Pubmed: 2857723
Shultz J, Hermodson MA, Garner CC, Herrmann KM: The nucleotide sequence of the aroF gene of Escherichia coli and the amino acid sequence of the encoded protein, the tyrosine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase. J Biol Chem. 1984 Aug 10;259(15):9655-61.
Pubmed: 6146618
Hudson GS, Davidson BE: Nucleotide sequence and transcription of the phenylalanine and tyrosine operons of Escherichia coli K12. J Mol Biol. 1984 Dec 25;180(4):1023-51. doi: 10.1016/0022-2836(84)90269-9.
Pubmed: 6396419
Hudson GS, Rellos P, Davidson BE: Two promoters control the aroH gene of Escherichia coli. Gene. 1991 Jun 15;102(1):87-91. doi: 10.1016/0378-1119(91)90544-l.
Pubmed: 1677907
Ray JM, Yanofsky C, Bauerle R: Mutational analysis of the catalytic and feedback sites of the tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli. J Bacteriol. 1988 Dec;170(12):5500-6. doi: 10.1128/jb.170.12.5500-5506.1988.
Pubmed: 2903857
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Davies WD, Davidson BE: The nucleotide sequence of aroG, the gene for 3-deoxy-D-arabinoheptulosonate-7-phosphate synthetase (phe) in Escherichia coli K12. Nucleic Acids Res. 1982 Jul 10;10(13):4045-58. doi: 10.1093/nar/10.13.4045.
Pubmed: 6125934
Oshima T, Aiba H, Baba T, Fujita K, Hayashi K, Honjo A, Ikemoto K, Inada T, Itoh T, Kajihara M, Kanai K, Kashimoto K, Kimura S, Kitagawa M, Makino K, Masuda S, Miki T, Mizobuchi K, Mori H, Motomura K, Nakamura Y, Nashimoto H, Nishio Y, Saito N, Horiuchi T, et al.: A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map. DNA Res. 1996 Jun 30;3(3):137-55. doi: 10.1093/dnares/3.3.137.
Pubmed: 8905232
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Millar G, Coggins JR: The complete amino acid sequence of 3-dehydroquinate synthase of Escherichia coli K12. FEBS Lett. 1986 May 5;200(1):11-7. doi: 10.1016/0014-5793(86)80501-4.
Pubmed: 3009224
Lyngstadaas A, Lobner-Olesen A, Boye E: Characterization of three genes in the dam-containing operon of Escherichia coli. Mol Gen Genet. 1995 Jun 10;247(5):546-54. doi: 10.1007/bf00290345.
Pubmed: 7603433
Duncan K, Chaudhuri S, Campbell MS, Coggins JR: The overexpression and complete amino acid sequence of Escherichia coli 3-dehydroquinase. Biochem J. 1986 Sep 1;238(2):475-83. doi: 10.1042/bj2380475.
Pubmed: 3541912
Chaudhuri S, Duncan K, Graham LD, Coggins JR: Identification of the active-site lysine residues of two biosynthetic 3-dehydroquinases. Biochem J. 1991 Apr 1;275 ( Pt 1):1-6. doi: 10.1042/bj2750001.
Pubmed: 1826831
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Millar G, Lewendon A, Hunter MG, Coggins JR: The cloning and expression of the aroL gene from Escherichia coli K12. Purification and complete amino acid sequence of shikimate kinase II, the aroL-gene product. Biochem J. 1986 Jul 15;237(2):427-37. doi: 10.1042/bj2370427.
Pubmed: 3026317
DeFeyter RC, Davidson BE, Pittard J: Nucleotide sequence of the transcription unit containing the aroL and aroM genes from Escherichia coli K-12. J Bacteriol. 1986 Jan;165(1):233-9. doi: 10.1128/jb.165.1.233-239.1986.
Pubmed: 3001025
DeFeyter RC, Pittard J: Genetic and molecular analysis of aroL, the gene for shikimate kinase II in Escherichia coli K-12. J Bacteriol. 1986 Jan;165(1):226-32. doi: 10.1128/jb.165.1.226-232.1986.
Pubmed: 3001024
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000836
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings