Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Gluconeogenesis from L-Malic Acid
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-03-24
Last Updated: 2024-12-22
Gluconeogenesis from L-malic acid starts from the introduction of L-malic acid into cytoplasm either through a C4 dicarboxylate / orotate:H+ symporter or a dicarboxylate transporter (succinic acid antiporter). L-malic acid is then metabolized through 3 possible ways: NAD driven malate dehydrogenase resulting in oxalacetic acid, NADP driven malate dehydrogenase B resulting pyruvic acid or malate dehydrogenase, NAD-requiring resulting in pyruvic acid.
Oxalacetic acid is processed by phosphoenolpyruvate carboxykinase (ATP driven) while pyruvic acid is processed by phosphoenolpyruvate synthetase resulting in phosphoenolpyruvic acid. This compound is dehydrated by enolase resulting in an 2-phosphoglyceric acid which is then isomerized by 2,3-bisphosphoglycerate-independent phosphoglycerate mutase resulting in a 3-phosphoglyceric acid which is phosphorylated by an ATP driven phosphoglycerate kinase resulting in a glyceric acid 1,3-biphosphate. This compound undergoes an NADH driven glyceraldehyde 3-phosphate dehydrogenase reaction resulting in a D-Glyceraldehyde 3-phosphate which is first isomerized into dihydroxyacetone phosphate through an triosephosphate isomerase. D-glyceraldehyde 3-phosphate and Dihydroxyacetone phosphate react through a fructose biphosphate aldolase protein complex resulting in a fructose 1,6-biphosphate. Fructose 1,6-biphosphateis is metabolized by a fructose-1,6-bisphosphatase resulting in a Beta-D-fructofuranose 6-phosphate which is then isomerized into a Beta-D-glucose 6-phosphate through a glucose-6-phosphate isomerase.
References
Gluconeogenesis from L-Malic Acid References
Chao YP, Patnaik R, Roof WD, Young RF, Liao JC: Control of gluconeogenic growth by pps and pck in Escherichia coli. J Bacteriol. 1993 Nov;175(21):6939-44.
Pubmed: 8226637
Chi Z, Wang ZP, Wang GY, Khan I, Chi ZM: Microbial biosynthesis and secretion of l-malic acid and its applications. Crit Rev Biotechnol. 2016;36(1):99-107. doi: 10.3109/07388551.2014.924474. Epub 2014 Jul 15.
Pubmed: 25025277
Medina V, Pontarollo R, Glaeske D, Tabel H, Goldie H: Sequence of the pckA gene of Escherichia coli K-12: relevance to genetic and allosteric regulation and homology of E. coli phosphoenolpyruvate carboxykinase with the enzymes from Trypanosoma brucei and Saccharomyces cerevisiae. J Bacteriol. 1990 Dec;172(12):7151-6. doi: 10.1128/jb.172.12.7151-7156.1990.
Pubmed: 1701430
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Yamamoto Y, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kimura S, Kitagawa M, Makino K, Miki T, Mitsuhashi N, Mizobuchi K, Mori H, Nakade S, Nakamura Y, Nashimoto H, Oshima T, Oyama S, Saito N, Sampei G, Satoh Y, Sivasundaram S, Tagami H, Horiuchi T, et al.: Construction of a contiguous 874-kb sequence of the Escherichia coli -K12 genome corresponding to 50.0-68.8 min on the linkage map and analysis of its sequence features. DNA Res. 1997 Apr 28;4(2):91-113. doi: 10.1093/dnares/4.2.91.
Pubmed: 9205837
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Niersbach M, Kreuzaler F, Geerse RH, Postma PW, Hirsch HJ: Cloning and nucleotide sequence of the Escherichia coli K-12 ppsA gene, encoding PEP synthase. Mol Gen Genet. 1992 Jan;231(2):332-6. doi: 10.1007/bf00279808.
Pubmed: 1310524
Spring TG, Wold F: The purification and characterization of Escherichia coli enolase. J Biol Chem. 1971 Nov 25;246(22):6797-802.
Pubmed: 4942326
Dannelly HK, Duclos B, Cozzone AJ, Reeves HC: Phosphorylation of Escherichia coli enolase. Biochimie. 1989 Sep-Oct;71(9-10):1095-100. doi: 10.1016/0300-9084(89)90116-8.
Pubmed: 2513001
Chandran V, Luisi BF: Recognition of enolase in the Escherichia coli RNA degradosome. J Mol Biol. 2006 Apr 21;358(1):8-15. doi: 10.1016/j.jmb.2006.02.012. Epub 2006 Feb 21.
Pubmed: 16516921
Sofia HJ, Burland V, Daniels DL, Plunkett G 3rd, Blattner FR: Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids Res. 1994 Jul 11;22(13):2576-86. doi: 10.1093/nar/22.13.2576.
Pubmed: 8041620
Alefounder PR, Perham RN: Identification, molecular cloning and sequence analysis of a gene cluster encoding the class II fructose 1,6-bisphosphate aldolase, 3-phosphoglycerate kinase and a putative second glyceraldehyde 3-phosphate dehydrogenase of Escherichia coli. Mol Microbiol. 1989 Jun;3(6):723-32. doi: 10.1111/j.1365-2958.1989.tb00221.x.
Pubmed: 2546007
Nelson K, Whittam TS, Selander RK: Nucleotide polymorphism and evolution in the glyceraldehyde-3-phosphate dehydrogenase gene (gapA) in natural populations of Salmonella and Escherichia coli. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6667-71. doi: 10.1073/pnas.88.15.6667.
Pubmed: 1862091
Branlant G, Branlant C: Nucleotide sequence of the Escherichia coli gap gene. Different evolutionary behavior of the NAD+-binding domain and of the catalytic domain of D-glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1985 Jul 1;150(1):61-6. doi: 10.1111/j.1432-1033.1985.tb08988.x.
Pubmed: 2990926
Velur Selvamani RS, Telaar M, Friehs K, Flaschel E: Antibiotic-free segregational plasmid stabilization in Escherichia coli owing to the knockout of triosephosphate isomerase (tpiA). Microb Cell Fact. 2014 Apr 21;13:58. doi: 10.1186/1475-2859-13-58.
Pubmed: 24745552
Pichersky E, Gottlieb LD, Hess JF: Nucleotide sequence of the triose phosphate isomerase gene of Escherichia coli. Mol Gen Genet. 1984;195(1-2):314-20. doi: 10.1007/bf00332765.
Pubmed: 6092857
Plunkett G 3rd, Burland V, Daniels DL, Blattner FR: Analysis of the Escherichia coli genome. III. DNA sequence of the region from 87.2 to 89.2 minutes. Nucleic Acids Res. 1993 Jul 25;21(15):3391-8. doi: 10.1093/nar/21.15.3391.
Pubmed: 8346018
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000839
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings