Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Galactitol and Galactonate Degradation
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-03-24
Last Updated: 2024-12-24
Escherichia coli can solely use D-galactonate as a carbon and energy source. The initial step, after the transport of galactonic acid into the cell is the dehydration of D-galactonate to 2-dehydro-3-deoxy-D-galactonate by D-galactonate dehydratase. Subsequent phosphorylation by 2-dehydro-3-deoxygalactonate kinase and aldol cleavage by 2-oxo-3-deoxygalactonate 6-phosphate aldolase produces pyruvate and D-glyceraldehyde-3-phosphate, which enter central metabolism. Galactitol can also be utilized by E. coli K-12 as the sole source of carbon and energy. Each enters the cell via a specific phosphotransferase system, so the first intracellular species is D-galactitol-1-phosphate or D-galactitol-6-phosphate, which are identical. This sugar alcohol phosphate becomes the substrate for a dehydrogenase that oxidizes its 2-alcohol group to a keto group. Galactitol-1-phosphate is dehydrogenated to tagatose-6-phosphate which is then acted on by a kinase and an aldose and eventually is converted to glycolysis intermediates.
References
Galactitol and Galactonate Degradation References
Babul J: Phosphofructokinases from Escherichia coli. Purification and characterization of the nonallosteric isozyme. J Biol Chem. 1978 Jun 25;253(12):4350-5.
Pubmed: 149128
Baez M, Cabrera R, Guixe V, Babul J: Unfolding pathway of the dimeric and tetrameric forms of phosphofructokinase-2 from Escherichia coli. Biochemistry. 2007 May 22;46(20):6141-8. doi: 10.1021/bi7002247. Epub 2007 May 1.
Pubmed: 17469854
Baez M, Merino F, Astorga G, Babul J: Uncoupling the MgATP-induced inhibition and aggregation of Escherichia coli phosphofructokinase-2 by C-terminal mutations. FEBS Lett. 2008 Jun 11;582(13):1907-12. doi: 10.1016/j.febslet.2008.05.011. Epub 2008 May 21.
Pubmed: 18501195
Baez M, Babul J: Reversible unfolding of dimeric phosphofructokinase-2 from Escherichia coli reveals a dominant role of inter-subunit contacts for stability. FEBS Lett. 2009 Jun 18;583(12):2054-60. doi: 10.1016/j.febslet.2009.05.034. Epub 2009 May 22.
Pubmed: 19465020
Baez M, Wilson CA, Babul J: Folding kinetic pathway of phosphofructokinase-2 from Escherichia coli: a homodimeric enzyme with a complex domain organization. FEBS Lett. 2011 Jul 21;585(14):2158-64. doi: 10.1016/j.febslet.2011.05.041. Epub 2011 May 27.
Pubmed: 21627967
Baez M, Wilson CA, Ramirez-Sarmiento CA, Guixe V, Babul J: Expanded monomeric intermediate upon cold and heat unfolding of phosphofructokinase-2 from Escherichia coli. Biophys J. 2012 Nov 21;103(10):2187-94. doi: 10.1016/j.bpj.2012.09.043. Epub 2012 Nov 20.
Pubmed: 23200052
Baez M, Cabrera R, Pereira HM, Blanco A, Villalobos P, Ramirez-Sarmiento CA, Caniuguir A, Guixe V, Garratt RC, Babul J: A ribokinase family conserved monovalent cation binding site enhances the MgATP-induced inhibition in E. coli phosphofructokinase-2. Biophys J. 2013 Jul 2;105(1):185-93. doi: 10.1016/j.bpj.2013.05.028.
Pubmed: 23823238
Bochkareva ES, Girshovich AS, Bibi E: Identification and characterization of the Escherichia coli stress protein UP12, a putative in vivo substrate of GroEL. Eur J Biochem. 2002 Jun;269(12):3032-40.
Pubmed: 12071968
Brinkkotter A, Kloss H, Alpert C, Lengeler JW: Pathways for the utilization of N-acetyl-galactosamine and galactosamine in Escherichia coli. Mol Microbiol. 2000 Jul;37(1):125-35.
Pubmed: 10931310
Brinkkotter A, Shakeri-Garakani A, Lengeler JW: Two class II D-tagatose-bisphosphate aldolases from enteric bacteria. Arch Microbiol. 2002 May;177(5):410-9. doi: 10.1007/s00203-002-0406-6. Epub 2002 Mar 16.
Pubmed: 11976750
Cabrera R, Guixe V, Alfaro J, Rodriguez PH, Babul J: Ligand-dependent structural changes and limited proteolysis of Escherichia coli phosphofructokinase-2. Arch Biochem Biophys. 2002 Oct 15;406(2):289-95.
Pubmed: 12361717
Cabrera R, Caniuguir A, Ambrosio AL, Guixe V, Garratt RC, Babul J: Crystallization and preliminary crystallographic analysis of the tetrameric form of phosphofructokinase-2 from Escherichia coli, a member of the ribokinase family. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Sep 1;62(Pt 9):935-7. doi: 10.1107/S1744309106032246. Epub 2006 Aug 26.
Pubmed: 16946484
Cabrera R, Ambrosio AL, Garratt RC, Guixe V, Babul J: Crystallographic structure of phosphofructokinase-2 from Escherichia coli in complex with two ATP molecules. Implications for substrate inhibition. J Mol Biol. 2008 Nov 14;383(3):588-602. doi: 10.1016/j.jmb.2008.08.029. Epub 2008 Aug 22.
Pubmed: 18762190
Cabrera R, Babul J, Guixe V: Ribokinase family evolution and the role of conserved residues at the active site of the PfkB subfamily representative, Pfk-2 from Escherichia coli. Arch Biochem Biophys. 2010 Oct 1;502(1):23-30. doi: 10.1016/j.abb.2010.06.024. Epub 2010 Jun 25.
Pubmed: 20599671
Cabrera R, Baez M, Pereira HM, Caniuguir A, Garratt RC, Babul J: The crystal complex of phosphofructokinase-2 of Escherichia coli with fructose-6-phosphate: kinetic and structural analysis of the allosteric ATP inhibition. J Biol Chem. 2011 Feb 18;286(7):5774-83. doi: 10.1074/jbc.M110.163162. Epub 2010 Dec 8.
Pubmed: 21147773
Caniuguir A, Cabrera R, Baez M, Vasquez CC, Babul J, Guixe V: Role of Cys-295 on subunit interactions and allosteric regulation of phosphofructokinase-2 from Escherichia coli. FEBS Lett. 2005 Apr 25;579(11):2313-8. doi: 10.1016/j.febslet.2005.02.078.
Pubmed: 15848164
Daldal F, Fraenkel DG: Tn10 insertions in the pfkB region of Escherichia coli. J Bacteriol. 1981 Sep;147(3):935-43.
Pubmed: 6268614
Daldal F: Nucleotide sequence of gene pfkB encoding the minor phosphofructokinase of Escherichia coli K-12. Gene. 1984 Jun;28(3):337-42.
Pubmed: 6235149
Diaz-Mejia JJ, Babu M, Emili A: Computational and experimental approaches to chart the Escherichia coli cell-envelope-associated proteome and interactome. FEMS Microbiol Rev. 2009 Jan;33(1):66-97. doi: 10.1111/j.1574-6976.2008.00141.x. Epub 2008 Nov 27.
Pubmed: 19054114
Cooper RA: The utilisation of D-galactonate and D-2-oxo-3-deoxygalactonate by Escherichia coli K-12. Biochemical and genetical studies. Arch Microbiol. 1978 Aug 1;118(2):199-206.
Pubmed: 211976
Deacon J, Cooper RA: D-Galactonate utilisation by enteric bacteria. The catabolic pathway in Escherichia coli. FEBS Lett. 1977 May 15;77(2):201-5.
Pubmed: 324806
Burland V, Plunkett G 3rd, Daniels DL, Blattner FR: DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: organizational symmetry around the origin of replication. Genomics. 1993 Jun;16(3):551-61. doi: 10.1006/geno.1993.1230.
Pubmed: 7686882
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Riley M, Abe T, Arnaud MB, Berlyn MK, Blattner FR, Chaudhuri RR, Glasner JD, Horiuchi T, Keseler IM, Kosuge T, Mori H, Perna NT, Plunkett G 3rd, Rudd KE, Serres MH, Thomas GH, Thomson NR, Wishart D, Wanner BL: Escherichia coli K-12: a cooperatively developed annotation snapshot--2005. Nucleic Acids Res. 2006 Jan 5;34(1):1-9. doi: 10.1093/nar/gkj405. Print 2006.
Pubmed: 16397293
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Nobelmann B, Lengeler JW: Sequence of the gat operon for galactitol utilization from a wild-type strain EC3132 of Escherichia coli. Biochim Biophys Acta. 1995 May 17;1262(1):69-72. doi: 10.1016/0167-4781(95)00053-j.
Pubmed: 7772602
Itoh T, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Kasai H, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Seki Y, Horiuchi T, et al.: A 460-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 40.1-50.0 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):379-92. doi: 10.1093/dnares/3.6.379.
Pubmed: 9097040
Daldal F: Nucleotide sequence of gene pfkB encoding the minor phosphofructokinase of Escherichia coli K-12. Gene. 1984 Jun;28(3):337-42. doi: 10.1016/0378-1119(84)90151-3.
Pubmed: 6235149
Daldal F: Molecular cloning of the gene for phosphofructokinase-2 of Escherichia coli and the nature of a mutation, pfkB1, causing a high level of the enzyme. J Mol Biol. 1983 Aug 5;168(2):285-305. doi: 10.1016/s0022-2836(83)80019-9.
Pubmed: 6310120
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Reizer J, Ramseier TM, Reizer A, Charbit A, Saier MH Jr: Novel phosphotransferase genes revealed by bacterial genome sequencing: a gene cluster encoding a putative N-acetylgalactosamine metabolic pathway in Escherichia coli. Microbiology. 1996 Feb;142 ( Pt 2):231-50. doi: 10.1099/13500872-142-2-231.
Pubmed: 8932697
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000840
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings