
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Glycerol Metabolism
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-06-02
Last Updated: 2025-05-08
Glycerol metabolism starts with glycerol is introduced into the cytoplasm through a glycerol channel GlpF Glycerol is then phosphorylated through an ATP mediated glycerol kinase resulting in a Glycerol 3-phosphate. This compound can also be obtained through a glycerophosphodiester reacting with water through a glycerophosphoryl diester phosphodiesterase or it can also be introduced into the cytoplasm through a glycerol-3-phosphate:phosphate antiporter.
Glycerol 3-phosphate is then metabolized into a dihydroxyacetone phosphate in both aerobic or anaerobic conditions. In anaerobic conditions the metabolism is done through the reaction of glycerol 3-phosphate with a menaquinone mediated by a glycerol-3-phosphate dehydrogenase protein complex. In aerobic conditions, the metabolism is done through the reaction of glycerol 3-phosphate with ubiquinone mediated by a glycerol-3-phosphate dehydrogenase [NAD(P]+].
Dihydroxyacetone phosphate is then introduced into the fructose metabolism by turning a dihydroxyacetone into an isomer through a triosephosphate isomerase resulting in a D-glyceraldehyde 3-phosphate which in turn reacts with a phosphate through a NAD dependent Glyceraldehyde 3-phosphate dehydrogenase resulting in a glyceric acid 1,3-biphosphate. This compound is desphosphorylated by a phosphoglycerate kinase resulting in a 3-phosphoglyceric acid.This compound in turn can either react with a 2,3-bisphosphoglycerate-independent phosphoglycerate mutase or a 2,3-bisphosphoglycerate-independent phosphoglycerate mutase resulting in a 2-phospho-D-glyceric acid. This compound interacts with an enolase resulting in a phosphoenolpyruvic acid and water. Phosphoenolpyruvic acid can react either through a AMP driven phosphoenoylpyruvate synthase or a ADP driven pyruvate kinase protein complex resulting in a pyruvic acid. Pyruvic acid reacts with CoA through a NAD driven pyruvate dehydrogenase complex resulting in a carbon dioxide and a Acetyl-CoA which gets incorporated into the TCA cycle pathway.
References
Glycerol Metabolism References
Ambudkar SV, Larson TJ, Maloney PC: Reconstitution of sugar phosphate transport systems of Escherichia coli. J Biol Chem. 1986 Jul 15;261(20):9083-6.
Pubmed: 3522583
Beijer L, Nilsson RP, Holmberg C, Rutberg L: The glpP and glpF genes of the glycerol regulon in Bacillus subtilis. J Gen Microbiol. 1993 Feb;139(2):349-59. doi: 10.1099/00221287-139-2-349.
Pubmed: 8436953
Charrier V, Buckley E, Parsonage D, Galinier A, Darbon E, Jaquinod M, Forest E, Deutscher J, Claiborne A: Cloning and sequencing of two enterococcal glpK genes and regulation of the encoded glycerol kinases by phosphoenolpyruvate-dependent, phosphotransferase system-catalyzed phosphorylation of a single histidyl residue. J Biol Chem. 1997 May 30;272(22):14166-74.
Pubmed: 9162046
Cole ST, Eiglmeier K, Ahmed S, Honore N, Elmes L, Anderson WF, Weiner JH: Nucleotide sequence and gene-polypeptide relationships of the glpABC operon encoding the anaerobic sn-glycerol-3-phosphate dehydrogenase of Escherichia coli K-12. J Bacteriol. 1988 Jun;170(6):2448-56.
Pubmed: 3286606
Huang Y, Lemieux MJ, Song J, Auer M, Wang DN: Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science. 2003 Aug 1;301(5633):616-20. doi: 10.1126/science.1087619.
Pubmed: 12893936
Schryvers A, Lohmeier E, Weiner JH: Chemical and functional properties of the native and reconstituted forms of the membrane-bound, aerobic glycerol-3-phosphate dehydrogenase of Escherichia coli. J Biol Chem. 1978 Feb 10;253(3):783-8.
Pubmed: 340460
Tommassen J, Eiglmeier K, Cole ST, Overduin P, Larson TJ, Boos W: Characterization of two genes, glpQ and ugpQ, encoding glycerophosphoryl diester phosphodiesterases of Escherichia coli. Mol Gen Genet. 1991 Apr;226(1-2):321-7.
Pubmed: 1851953
Kabir MM, Shimizu K: Gene expression patterns for metabolic pathway in pgi knockout Escherichia coli with and without phb genes based on RT-PCR. J Biotechnol. 2003 Oct 9;105(1-2):11-31.
Pubmed: 14511906
Froman BE, Tait RC, Gottlieb LD: Isolation and characterization of the phosphoglucose isomerase gene from Escherichia coli. Mol Gen Genet. 1989 May;217(1):126-31. doi: 10.1007/bf00330951.
Pubmed: 2549364
Smith MW, Doolittle RF: Anomalous phylogeny involving the enzyme glucose-6-phosphate isomerase. J Mol Evol. 1992 Jun;34(6):544-5.
Pubmed: 1593646
Donahue JL, Bownas JL, Niehaus WG, Larson TJ: Purification and characterization of glpX-encoded fructose 1, 6-bisphosphatase, a new enzyme of the glycerol 3-phosphate regulon of Escherichia coli. J Bacteriol. 2000 Oct;182(19):5624-7. doi: 10.1128/jb.182.19.5624-5627.2000.
Pubmed: 10986273
Truniger V, Boos W, Sweet G: Molecular analysis of the glpFKX regions of Escherichia coli and Shigella flexneri. J Bacteriol. 1992 Nov;174(21):6981-91. doi: 10.1128/jb.174.21.6981-6991.1992.
Pubmed: 1400248
Plunkett G 3rd, Burland V, Daniels DL, Blattner FR: Analysis of the Escherichia coli genome. III. DNA sequence of the region from 87.2 to 89.2 minutes. Nucleic Acids Res. 1993 Jul 25;21(15):3391-8. doi: 10.1093/nar/21.15.3391.
Pubmed: 8346018
Sedivy JM, Daldal F, Fraenkel DG: Fructose bisphosphatase of Escherichia coli: cloning of the structural gene (fbp) and preparation of a chromosomal deletion. J Bacteriol. 1984 Jun;158(3):1048-53.
Pubmed: 6327623
Hamilton WD, Harrison DA, Dyer TA: Sequence of the Escherichia coli fructose-1,6-bisphosphatase gene. Nucleic Acids Res. 1988 Sep 12;16(17):8707. doi: 10.1093/nar/16.17.8707.
Pubmed: 2843822
Burland V, Plunkett G 3rd, Sofia HJ, Daniels DL, Blattner FR: Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res. 1995 Jun 25;23(12):2105-19. doi: 10.1093/nar/23.12.2105.
Pubmed: 7610040
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Alefounder PR, Perham RN: Identification, molecular cloning and sequence analysis of a gene cluster encoding the class II fructose 1,6-bisphosphate aldolase, 3-phosphoglycerate kinase and a putative second glyceraldehyde 3-phosphate dehydrogenase of Escherichia coli. Mol Microbiol. 1989 Jun;3(6):723-32. doi: 10.1111/j.1365-2958.1989.tb00221.x.
Pubmed: 2546007
Maupin-Furlow JA, Rosentel JK, Lee JH, Deppenmeier U, Gunsalus RP, Shanmugam KT: Genetic analysis of the modABCD (molybdate transport) operon of Escherichia coli. J Bacteriol. 1995 Sep;177(17):4851-6. doi: 10.1128/jb.177.17.4851-4856.1995.
Pubmed: 7665460
Walkenhorst HM, Hemschemeier SK, Eichenlaub R: Molecular analysis of the molybdate uptake operon, modABCD, of Escherichia coli and modR, a regulatory gene. Microbiol Res. 1995 Nov;150(4):347-61. doi: 10.1016/S0944-5013(11)80016-9.
Pubmed: 8564363
Oshima T, Aiba H, Baba T, Fujita K, Hayashi K, Honjo A, Ikemoto K, Inada T, Itoh T, Kajihara M, Kanai K, Kashimoto K, Kimura S, Kitagawa M, Makino K, Masuda S, Miki T, Mizobuchi K, Mori H, Motomura K, Nakamura Y, Nashimoto H, Nishio Y, Saito N, Horiuchi T, et al.: A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map. DNA Res. 1996 Jun 30;3(3):137-55. doi: 10.1093/dnares/3.3.137.
Pubmed: 8905232
Daldal F: Nucleotide sequence of gene pfkB encoding the minor phosphofructokinase of Escherichia coli K-12. Gene. 1984 Jun;28(3):337-42. doi: 10.1016/0378-1119(84)90151-3.
Pubmed: 6235149
Daldal F: Molecular cloning of the gene for phosphofructokinase-2 of Escherichia coli and the nature of a mutation, pfkB1, causing a high level of the enzyme. J Mol Biol. 1983 Aug 5;168(2):285-305. doi: 10.1016/s0022-2836(83)80019-9.
Pubmed: 6310120
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Nelson K, Whittam TS, Selander RK: Nucleotide polymorphism and evolution in the glyceraldehyde-3-phosphate dehydrogenase gene (gapA) in natural populations of Salmonella and Escherichia coli. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6667-71. doi: 10.1073/pnas.88.15.6667.
Pubmed: 1862091
Branlant G, Branlant C: Nucleotide sequence of the Escherichia coli gap gene. Different evolutionary behavior of the NAD+-binding domain and of the catalytic domain of D-glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1985 Jul 1;150(1):61-6. doi: 10.1111/j.1432-1033.1985.tb08988.x.
Pubmed: 2990926
Sofia HJ, Burland V, Daniels DL, Plunkett G 3rd, Blattner FR: Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids Res. 1994 Jul 11;22(13):2576-86. doi: 10.1093/nar/22.13.2576.
Pubmed: 8041620
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000931
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings