Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Secondary Metabolites: Ubiquinol Biosynthesis
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-07-15
Last Updated: 2025-01-22
The biosynthesis of ubiquinol starts the interaction of 4-hydroxybenzoic acid interacting with an octaprenyl diphosphate. The former compound comes from the chorismate interacting with a chorismate lyase resulting in the release of a pyruvic acid and a 4-hydroxybenzoic acid. On the other hand, the latter compound, octaprenyl diphosphate is the result of a farnesyl pyrophosphate interacting with an isopentenyl pyrophosphate through an octaprenyl diphosphate synthase resulting in the release of a pyrophosphate and an octaprenyl diphosphate.
The 4-hydroxybenzoic acid interacts with octaprenyl diphosphate through a 4-hydroxybenzoate octaprenyltransferase resulting in the release of a pyrophosphate and a 3-octaprenyl-4-hydroxybenzoate. The latter compound then interacts with a hydrogen ion through a 3-octaprenyl-4-hydroxybenzoate carboxy-lyase resulting in the release of a carbon dioxide and a 2-octaprenylphenol. The latter compound interacts with an oxygen molecule and a hydrogen ion through a NADPH driven 2-octaprenylphenol hydroxylase resulting in a NADP, a water molecule and a 2-octaprenyl-6-hydroxyphenol.
The 2-octaprenyl-6-hydroxyphenol interacts with an S-adenosylmethionine through a bifunctional 3-demethylubiquinone-8 3-O-methyltransferase and 2-octaprenyl-6-hydroxyphenol methylase resulting in the release of a hydrogen ion, an s-adenosylhomocysteine and a 2-methoxy-6-(all-trans-octaprenyl)phenol. The latter compound then interacts with an oxygen molecule and a hydrogen ion through a NADPH driven 2-octaprenyl-6-methoxyphenol hydroxylase resulting in a NADP, a water molecule and a 2-methoxy-6-all trans-octaprenyl-2-methoxy-1,4-benzoquinol.
The latter compound interacts with a S-adenosylmethionine through a bifunctional 2-octaprenyl-6-methoxy-1,4-benzoquinone methylase and S-adenosylmethionine:2-DMK methyltransferase resulting in a s-adenosylhomocysteine, a hydrogen ion and a 6-methoxy-3-methyl-2-all-trans-octaprenyl-1,4-benzoquinol. The 6-methoxy-3-methyl-2-all-trans-octaprenyl-1,4-benzoquinol. interacts with a reduced acceptor, an oxygen molecule through a 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone hydroxylase resulting in the release of a water molecule, an oxidized electron acceptor and a 3-demethylubiquinol-8. The latter compound then interacts with a S-adenosylmethionine through a bifunctional 3-demethylubiquinone-8 3-O-methyltransferase and 2-octaprenyl-6-hydroxyphenol methylase resulting in a hydrogen ion, a S-adenosylhomocysteine and a ubiquinol 8.
References
Secondary Metabolites: Ubiquinol Biosynthesis References
KEGG: http://www.genome.jp/kegg-bin/show_module?M00117
Alexander K, Young IG: Alternative hydroxylases for the aerobic and anaerobic biosynthesis of ubiquinone in Escherichia coli. Biochemistry. 1978 Oct 31;17(22):4750-5.
Pubmed: 365223
Gallagher DT, Mayhew M, Holden MJ, Howard A, Kim KJ, Vilker VL: The crystal structure of chorismate lyase shows a new fold and a tightly retained product. Proteins. 2001 Aug 15;44(3):304-11.
Pubmed: 11455603
Gulmezian M, Zhang H, Javor GT, Clarke CF: Genetic evidence for an interaction of the UbiG O-methyltransferase with UbiX in Escherichia coli coenzyme Q biosynthesis. J Bacteriol. 2006 Sep;188(17):6435-9. doi: 10.1128/JB.00668-06.
Pubmed: 16923914
Holden MJ, Mayhew MP, Gallagher DT, Vilker VL: Chorismate lyase: kinetics and engineering for stability. Biochim Biophys Acta. 2002 Jan 31;1594(1):160-7.
Pubmed: 11825618
Knoell HE, Kraft R, Knappe J: Dioxygen and temperature dependence of ubiquinone formation in Escherichia coli: studies of cells charged with 2-octaprenyl phenol. Eur J Biochem. 1978 Sep 15;90(1):107-12.
Pubmed: 361395
Knoell HE: Isolation of a soluble enzyme complex comprising the ubiquinone-8 synthesis apparatus from the cytoplasmic membrane of Escherichia coli. Biochem Biophys Res Commun. 1979 Dec 14;91(3):919-25.
Pubmed: 393264
Meganathan R: Ubiquinone biosynthesis in microorganisms. FEMS Microbiol Lett. 2001 Sep 25;203(2):131-9.
Pubmed: 11583838
Meganathan R: Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): a perspective on enzymatic mechanisms. Vitam Horm. 2001;61:173-218.
Pubmed: 11153266
Soballe B, Poole RK: Microbial ubiquinones: multiple roles in respiration, gene regulation and oxidative stress management. Microbiology. 1999 Aug;145 ( Pt 8):1817-30. doi: 10.1099/13500872-145-8-1817.
Pubmed: 10463148
Siebert M, Bechthold A, Melzer M, May U, Berger U, Schroder G, Schroder J, Severin K, Heide L: Ubiquinone biosynthesis. Cloning of the genes coding for chorismate pyruvate-lyase and 4-hydroxybenzoate octaprenyl transferase from Escherichia coli. FEBS Lett. 1992 Aug 3;307(3):347-50. doi: 10.1016/0014-5793(92)80710-x.
Pubmed: 1644192
Nichols BP, Green JM: Cloning and sequencing of Escherichia coli ubiC and purification of chorismate lyase. J Bacteriol. 1992 Aug;174(16):5309-16. doi: 10.1128/jb.174.16.5309-5316.1992.
Pubmed: 1644758
Nishimura K, Nakahigashi K, Inokuchi H: Location of the ubiA gene on the physical map of Escherichia coli. J Bacteriol. 1992 Sep;174(17):5762. doi: 10.1128/jb.174.17.5762.1992.
Pubmed: 1512213
Asai K, Fujisaki S, Nishimura Y, Nishino T, Okada K, Nakagawa T, Kawamukai M, Matsuda H: The identification of Escherichia coli ispB (cel) gene encoding the octaprenyl diphosphate synthase. Biochem Biophys Res Commun. 1994 Jul 15;202(1):340-5. doi: 10.1006/bbrc.1994.1933.
Pubmed: 8037730
Jeong JH, Kitakawa M, Isono S, Isono K: Cloning and nucleotide sequencing of the genes, rpIU and rpmA, for ribosomal proteins L21 and L27 of Escherichia coli. DNA Seq. 1993;4(1):59-67.
Pubmed: 8312607
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Wu G, Williams HD, Gibson F, Poole RK: Mutants of Escherichia coli affected in respiration: the cloning and nucleotide sequence of ubiA, encoding the membrane-bound p-hydroxybenzoate:octaprenyltransferase. J Gen Microbiol. 1993 Aug;139(8):1795-805. doi: 10.1099/00221287-139-8-1795.
Pubmed: 8409922
Young IG, Leppik RA, Hamilton JA, Gibson F: Biochemical and genetic studies on ubiquinone biosynthesis in Escherichia coli K-12:4-hydroxybenzoate octaprenyltransferase. J Bacteriol. 1972 Apr;110(1):18-25.
Pubmed: 4552989
Bailey MJ, Koronakis V, Schmoll T, Hughes C: Escherichia coli HlyT protein, a transcriptional activator of haemolysin synthesis and secretion, is encoded by the rfaH (sfrB) locus required for expression of sex factor and lipopolysaccharide genes. Mol Microbiol. 1992 Apr;6(8):1003-12. doi: 10.1111/j.1365-2958.1992.tb02166.x.
Pubmed: 1584020
Daniels DL, Plunkett G 3rd, Burland V, Blattner FR: Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. Science. 1992 Aug 7;257(5071):771-8. doi: 10.1126/science.1379743.
Pubmed: 1379743
Hajj Chehade M, Loiseau L, Lombard M, Pecqueur L, Ismail A, Smadja M, Golinelli-Pimpaneau B, Mellot-Draznieks C, Hamelin O, Aussel L, Kieffer-Jaquinod S, Labessan N, Barras F, Fontecave M, Pierrel F: ubiI, a new gene in Escherichia coli coenzyme Q biosynthesis, is involved in aerobic C5-hydroxylation. J Biol Chem. 2013 Jul 5;288(27):20085-92. doi: 10.1074/jbc.M113.480368. Epub 2013 May 24.
Pubmed: 23709220
Nakahigashi K, Miyamoto K, Nishimura K, Inokuchi H: Isolation and characterization of a light-sensitive mutant of Escherichia coli K-12 with a mutation in a gene that is required for the biosynthesis of ubiquinone. J Bacteriol. 1992 Nov;174(22):7352-9. doi: 10.1128/jb.174.22.7352-7359.1992.
Pubmed: 1339425
Wu G, Williams HD, Zamanian M, Gibson F, Poole RK: Isolation and characterization of Escherichia coli mutants affected in aerobic respiration: the cloning and nucleotide sequence of ubiG. Identification of an S-adenosylmethionine-binding motif in protein, RNA, and small-molecule methyltransferases. J Gen Microbiol. 1992 Oct;138(10):2101-12. doi: 10.1099/00221287-138-10-2101.
Pubmed: 1479344
Hussain K, Elliott EJ, Salmond GP: The parD- mutant of Escherichia coli also carries a gyrAam mutation. The complete sequence of gyrA. Mol Microbiol. 1987 Nov;1(3):259-73. doi: 10.1111/j.1365-2958.1987.tb01932.x.
Pubmed: 2834621
Yamamoto Y, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kimura S, Kitagawa M, Makino K, Miki T, Mitsuhashi N, Mizobuchi K, Mori H, Nakade S, Nakamura Y, Nashimoto H, Oshima T, Oyama S, Saito N, Sampei G, Satoh Y, Sivasundaram S, Tagami H, Horiuchi T, et al.: Construction of a contiguous 874-kb sequence of the Escherichia coli -K12 genome corresponding to 50.0-68.8 min on the linkage map and analysis of its sequence features. DNA Res. 1997 Apr 28;4(2):91-113. doi: 10.1093/dnares/4.2.91.
Pubmed: 9205837
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Lee PT, Hsu AY, Ha HT, Clarke CF: A C-methyltransferase involved in both ubiquinone and menaquinone biosynthesis: isolation and identification of the Escherichia coli ubiE gene. J Bacteriol. 1997 Mar;179(5):1748-54. doi: 10.1128/jb.179.5.1748-1754.1997.
Pubmed: 9045837
Kwon O, Kotsakis A, Meganathan R: Ubiquinone (coenzyme Q) biosynthesis in Escherichia coli: identification of the ubiF gene. FEMS Microbiol Lett. 2000 May 15;186(2):157-61. doi: 10.1111/j.1574-6968.2000.tb09097.x.
Pubmed: 10802164
Oshima T, Aiba H, Baba T, Fujita K, Hayashi K, Honjo A, Ikemoto K, Inada T, Itoh T, Kajihara M, Kanai K, Kashimoto K, Kimura S, Kitagawa M, Makino K, Masuda S, Miki T, Mizobuchi K, Mori H, Motomura K, Nakamura Y, Nashimoto H, Nishio Y, Saito N, Horiuchi T, et al.: A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7-28.0 min region on the linkage map. DNA Res. 1996 Jun 30;3(3):137-55. doi: 10.1093/dnares/3.3.137.
Pubmed: 8905232
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0000997
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings