Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Flavin Biosynthesis
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-09-15
Last Updated: 2025-01-27
The process of flavin biosynthesis starts with GTP being metabolized by interacting with 3 molecules of water through a GTP cyclohydrolase resulting in a release of formic acid, a pyrophosphate, two hydrog ions and 2,5-diamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one or 2,5-Diamino-6-hydroxy-4-(5-phosphoribosylamino)pyrimidine. Either of these compounds interacts with a water molecule and a hydrogen ion through a fused diaminohydroxyphosphoribosylaminopyrimidine deaminase / 5-amino-6-(5-phosphoribosylamino)uracil reductase resulting in an ammonium and 5-amino-6-(5-phospho-D-ribosylamino)uracil. This compound then interacts with a hydrogen ion through a NADPH dependent fused diaminohydroxyphosphoribosylaminopyrimidine deaminase / 5-amino-6-(5-phosphoribosylamino)uracil reductase resulting in the release of a NADP and a 5-amino-6-(5-phospho-D-ribitylamino)uracil. This compound then interacts with a water molecule through a 5-amino-6-(5-phospho-D-ribitylamino)uracil phosphatase resulting in a release of a phosphate, and a 5-amino-6-(D-ribitylamino)uracil.
D-ribulose 5-phosphate interacts with a3,4-dihydroxy-2-butanone 4-phosphate synthase resulting in the release of formic acid, a hydrogen ion and 1-deoxy-L-glycero-tetrulose 4-phosphate.
A 5-amino-6-(D-ribitylamino)uracil and 1-deoxy-L-glycero-tetrulose 4-phosphate interact through a 6,7-dimethyl-8-ribityllumazine synthase resulting in the release of 2 water molecules, a phosphate, a hydrogen ion and a 6,7-dimethyl-8-(1-D-ribityl)lumazine.
The latter compound then interacts with a hydrogen ion through a riboflavin synthase resulting in the release of a riboflavin and a 5-amino-6-(d-ribitylamino)uracil.
The riboflavin is then phosphorylated through an ATP dependent riboflavin kinase resulting in the release of a ADP, a hydrogen ion and a FLAVIN MONONUCLEOTIDE.
The flavin mononucleotide interad with a hydrogen ion and an ATP through the riboflavin kinase resulting in the release of a pyrophosphate and Flavin Adenine dinucleotide. This compound is then exported into the periplasm through a FMN/FAD exporter.
References
Flavin Biosynthesis References
Bacher A, Eberhardt S, Fischer M, Kis K, Richter G: Biosynthesis of vitamin b2 (riboflavin). Annu Rev Nutr. 2000;20:153-67. doi: 10.1146/annurev.nutr.20.1.153.
Pubmed: 10940330
Haase I, Sarge S, Illarionov B, Laudert D, Hohmann HP, Bacher A, Fischer M: Enzymes from the haloacid dehalogenase (HAD) superfamily catalyse the elusive dephosphorylation step of riboflavin biosynthesis. Chembiochem. 2013 Nov 25;14(17):2272-5. doi: 10.1002/cbic.201300544. Epub 2013 Oct 7.
Pubmed: 24123841
Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low Jr KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE. Escherichia coli and Salmonella, Cellular and Molecular Biology, Second Edition. American Society for Microbiology, Washington, D.C., 1996.
Katzenmeier G, Schmid C, Kellermann J, Lottspeich F, Bacher A: Biosynthesis of tetrahydrofolate. Sequence of GTP cyclohydrolase I from Escherichia coli. Biol Chem Hoppe Seyler. 1991 Nov;372(11):991-7.
Pubmed: 1665332
Schmid C, Meining W, Weinkauf S, Bachmann L, Ritz H, Eberhardt S, Gimbel W, Werner T, Lahm HW, Nar H, et al.: Studies on GTP cyclohydrolase I of Escherichia coli. Adv Exp Med Biol. 1993;338:157-62. doi: 10.1007/978-1-4615-2960-6_30.
Pubmed: 8304099
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Taura T, Ueguchi C, Shiba K, Ito K: Insertional disruption of the nusB (ssyB) gene leads to cold-sensitive growth of Escherichia coli and suppression of the secY24 mutation. Mol Gen Genet. 1992 Sep;234(3):429-32. doi: 10.1007/bf00538702.
Pubmed: 1406588
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Colloms SD, Sykora P, Szatmari G, Sherratt DJ: Recombination at ColE1 cer requires the Escherichia coli xerC gene product, a member of the lambda integrase family of site-specific recombinases. J Bacteriol. 1990 Dec;172(12):6973-80. doi: 10.1128/jb.172.12.6973-6980.1990.
Pubmed: 2254268
Daniels DL, Plunkett G 3rd, Burland V, Blattner FR: Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. Science. 1992 Aug 7;257(5071):771-8. doi: 10.1126/science.1379743.
Pubmed: 1379743
Richter G, Volk R, Krieger C, Lahm HW, Rothlisberger U, Bacher A: Biosynthesis of riboflavin: cloning, sequencing, and expression of the gene coding for 3,4-dihydroxy-2-butanone 4-phosphate synthase of Escherichia coli. J Bacteriol. 1992 Jun;174(12):4050-6. doi: 10.1128/jb.174.12.4050-4056.1992.
Pubmed: 1597419
Raina S, Mabey L, Georgopoulos C: The Escherichia coli htrP gene product is essential for bacterial growth at high temperatures: mapping, cloning, sequencing, and transcriptional regulation of htrP. J Bacteriol. 1991 Oct;173(19):5999-6008. doi: 10.1128/jb.173.19.5999-6008.1991.
Pubmed: 1917833
Yang TP, Depew RE: Nucleotide sequence of a region duplicated in Escherichia coli toc mutants. Biochim Biophys Acta. 1992 Mar 24;1130(2):227-8. doi: 10.1016/0167-4781(92)90535-8.
Pubmed: 1314093
Eberhardt S, Richter G, Gimbel W, Werner T, Bacher A: Cloning, sequencing, mapping and hyperexpression of the ribC gene coding for riboflavin synthase of Escherichia coli. Eur J Biochem. 1996 Dec 15;242(3):712-9. doi: 10.1111/j.1432-1033.1996.0712r.x.
Pubmed: 9022701
Hensel M, Shea JE, Baumler AJ, Gleeson C, Blattner F, Holden DW: Analysis of the boundaries of Salmonella pathogenicity island 2 and the corresponding chromosomal region of Escherichia coli K-12. J Bacteriol. 1997 Feb;179(4):1105-11. doi: 10.1128/jb.179.4.1105-1111.1997.
Pubmed: 9023191
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Meining W, Eberhardt S, Bacher A, Ladenstein R: The structure of the N-terminal domain of riboflavin synthase in complex with riboflavin at 2.6A resolution. J Mol Biol. 2003 Aug 29;331(5):1053-63. doi: 10.1016/s0022-2836(03)00844-1.
Pubmed: 12927541
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0001985
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings