Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
N-Acetylneuraminate, N-Acetylmannosamine, and N-Acetylglucosamine Degradation
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-10-06
Last Updated: 2025-01-30
The degradation of N-acetylneuraminate begins with its incorporation into the cytosol through a hydrogen symporter. Once inside the cytosol it is degraded by a N-acetylneuraminate lyase resulting in a release of a pyruvic acid and N-acetymannosamine. The latter compound is phosphorylated by an ATP driven N-Acetylmannosamine kinase resulting in the release of an ADP, a hydrogen ion and a N-Acetyl-D-mannosamine 6-phosphate. This phosphorylated compound is then metabolized by a putative N-acetylmannosamine-6-phosphate 2-epimerase resulting in the release of a N-Acetyl-D-glucosamine 6-phosphate. This compound is then deacetylated through a N-acetylglucosamine-6-phosphate deacetylase resulting in the release of an Acetic acid and a glucosamine 6-phosphate This compound can then be deaminated through a glucosamine-6-phosphate deaminase resulting in the release of an ammonium and a beta-D-fructofuranose 6-phosphate which can then be incorporated into the glycolysis pathway.
References
N-Acetylneuraminate, N-Acetylmannosamine, and N-Acetylglucosamine Degradation References
Kalivoda KA, Steenbergen SM, Vimr ER, Plumbridge J: Regulation of sialic acid catabolism by the DNA binding protein NanR in Escherichia coli. J Bacteriol. 2003 Aug;185(16):4806-15.
Pubmed: 12897000
Plumbridge J, Vimr E: Convergent pathways for utilization of the amino sugars N-acetylglucosamine, N-acetylmannosamine, and N-acetylneuraminic acid by Escherichia coli. J Bacteriol. 1999 Jan;181(1):47-54.
Pubmed: 9864311
Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM: Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev. 2004 Mar;68(1):132-53.
Pubmed: 15007099
Vimr ER, Troy FA: Identification of an inducible catabolic system for sialic acids (nan) in Escherichia coli. J Bacteriol. 1985 Nov;164(2):845-53.
Pubmed: 3902799
Alvarez-Anorve LI, Calcagno ML, Plumbridge J: Why does Escherichia coli grow more slowly on glucosamine than on N-acetylglucosamine? Effects of enzyme levels and allosteric activation of GlcN6P deaminase (NagB) on growth rates. J Bacteriol. 2005 May;187(9):2974-82. doi: 10.1128/JB.187.9.2974-2982.2005.
Pubmed: 15838023
Escherichia coli and Salmonella: Cellular and Molecular Biology (EcoSal). Online edition.
Ferenci T, Zhou Z, Betteridge T, Ren Y, Liu Y, Feng L, Reeves PR, Wang L: Genomic sequencing reveals regulatory mutations and recombinational events in the widely used MC4100 lineage of Escherichia coli K-12. J Bacteriol. 2009 Jun;191(12):4025-9. doi: 10.1128/JB.00118-09. Epub 2009 Apr 17.
Pubmed: 19376874
Aisaka K, Igarashi A, Yamaguchi K, Uwajima T: Purification, crystallization and characterization of N-acetylneuraminate lyase from Escherichia coli. Biochem J. 1991 Jun 1;276 ( Pt 2):541-6. doi: 10.1042/bj2760541.
Pubmed: 1646603
Izard T, Lawrence MC, Malby RL, Lilley GG, Colman PM: The three-dimensional structure of N-acetylneuraminate lyase from Escherichia coli. Structure. 1994 May 15;2(5):361-9.
Pubmed: 8081752
Lawrence MC, Barbosa JA, Smith BJ, Hall NE, Pilling PA, Ooi HC, Marcuccio SM: Structure and mechanism of a sub-family of enzymes related to N-acetylneuraminate lyase. J Mol Biol. 1997 Feb 21;266(2):381-99. doi: 10.1006/jmbi.1996.0769.
Pubmed: 9047371
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Souza JM, Plumbridge JA, Calcagno ML: N-acetylglucosamine-6-phosphate deacetylase from Escherichia coli: purification and molecular and kinetic characterization. Arch Biochem Biophys. 1997 Apr 15;340(2):338-46. doi: 10.1006/abbi.1997.9780.
Pubmed: 9143339
Ferreira FM, Mendoza-Hernandez G, Castaneda-Bueno M, Aparicio R, Fischer H, Calcagno ML, Oliva G: Structural analysis of N-acetylglucosamine-6-phosphate deacetylase apoenzyme from Escherichia coli. J Mol Biol. 2006 Jun 2;359(2):308-21. doi: 10.1016/j.jmb.2006.03.024. Epub 2006 Mar 29.
Pubmed: 16630633
Plumbridge JA: Sequence of the nagBACD operon in Escherichia coli K12 and pattern of transcription within the nag regulon. Mol Microbiol. 1989 Apr;3(4):505-15. doi: 10.1111/j.1365-2958.1989.tb00197.x.
Pubmed: 2668691
Rogers MJ, Ohgi T, Plumbridge J, Soll D: Nucleotide sequences of the Escherichia coli nagE and nagB genes: the structural genes for the N-acetylglucosamine transport protein of the bacterial phosphoenolpyruvate: sugar phosphotransferase system and for glucosamine-6-phosphate deaminase. Gene. 1988;62(2):197-207. doi: 10.1016/0378-1119(88)90558-6.
Pubmed: 3284790
Altamirano MM, Plumbridge JA, Barba HA, Calcagno ML: Glucosamine-6-phosphate deaminase from Escherichia coli has a trimer of dimers structure with three intersubunit disulphides. Biochem J. 1993 Nov 1;295 ( Pt 3):645-8. doi: 10.1042/bj2950645.
Pubmed: 8240271
Peri KG, Goldie H, Waygood EB: Cloning and characterization of the N-acetylglucosamine operon of Escherichia coli. Biochem Cell Biol. 1990 Jan;68(1):123-37.
Pubmed: 2190615
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0002044
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings