
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Adenine and Adenosine Salvage II
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-10-09
Last Updated: 2025-02-27
The salvage of adenine begins with adenine being transporter into the cytosol through a adeP hydrogen symporter. Once in the cytosol adenine is degraded by reacting with a ribose-1-phosphate through an adenosine phosphorylase resulting in the release of a phosphate and adenosine. Adenosine is then deaminated by reacting with water, a hydrogen ion and an adenosine deaminase resulting in the release of an ammonium and a inosine . Inosine can then be phosphorylated through an ATP driven inosine kinase resulting in the release of an ADP, a hydrogen ion and a IMP
References
Adenine and Adenosine Salvage II References
Kawasaki H, Shimaoka M, Usuda Y, Utagawa T: End-product regulation and kinetic mechanism of guanosine-inosine kinase from Escherichia coli. Biosci Biotechnol Biochem. 2000 May;64(5):972-9.
Pubmed: 10879466
Kawasaki H, Usuda Y, Shimaoka M, Utagawa T: Phosphorylation of guanosine using guanosine-inosine kinase from Exiguobacterium acetylicum coupled with ATP regeneration. Biosci Biotechnol Biochem. 2000 Oct;64(10):2259-61. doi: 10.1271/bbb.64.2259.
Pubmed: 11129609
Mori H, Iida A, Teshiba S, Fujio T: Cloning of a guanosine-inosine kinase gene of Escherichia coli and characterization of the purified gene product. J Bacteriol. 1995 Sep;177(17):4921-6.
Pubmed: 7665468
Xi H, Schneider BL, Reitzer L: Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage. J Bacteriol. 2000 Oct;182(19):5332-41.
Pubmed: 10986234
Escherichia coli and Salmonella: Cellular and Molecular Biology (EcoSal). Online edition.
Hershfield MS, Chaffee S, Koro-Johnson L, Mary A, Smith AA, Short SA: Use of site-directed mutagenesis to enhance the epitope-shielding effect of covalent modification of proteins with polyethylene glycol. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7185-9. doi: 10.1073/pnas.88.16.7185.
Pubmed: 1714590
Burland V, Plunkett G 3rd, Sofia HJ, Daniels DL, Blattner FR: Analysis of the Escherichia coli genome VI: DNA sequence of the region from 92.8 through 100 minutes. Nucleic Acids Res. 1995 Jun 25;23(12):2105-19. doi: 10.1093/nar/23.12.2105.
Pubmed: 7610040
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Chang ZY, Nygaard P, Chinault AC, Kellems RE: Deduced amino acid sequence of Escherichia coli adenosine deaminase reveals evolutionarily conserved amino acid residues: implications for catalytic function. Biochemistry. 1991 Feb 26;30(8):2273-80. doi: 10.1021/bi00222a033.
Pubmed: 1998686
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
Burland V, Plunkett G 3rd, Daniels DL, Blattner FR: DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: organizational symmetry around the origin of replication. Genomics. 1993 Jun;16(3):551-61. doi: 10.1006/geno.1993.1230.
Pubmed: 7686882
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Harlow KW, Nygaard P, Hove-Jensen B: Cloning and characterization of the gsk gene encoding guanosine kinase of Escherichia coli. J Bacteriol. 1995 Apr;177(8):2236-40. doi: 10.1128/jb.177.8.2236-2240.1995.
Pubmed: 7721718
Mori H, Iida A, Teshiba S, Fujio T: Cloning of a guanosine-inosine kinase gene of Escherichia coli and characterization of the purified gene product. J Bacteriol. 1995 Sep;177(17):4921-6. doi: 10.1128/jb.177.17.4921-4926.1995.
Pubmed: 7665468
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0002083
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings