
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Adenine and Adenosine Salvage III
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-10-09
Last Updated: 2025-02-27
Adenosine is first incorporated into the cytosol through either a nupG or a nupC transporter. Once in the cytosol, adenosine is degraded into adenine by reacting with a water and a adenosine nucleosidase, releasing a D-ribofuranose and a adenine. The adenine then reacts with a PRPP through a adenine phosphoribosyltransferase resulting in the release of a pyrophosphate and an AMP . The AMP in turn reacts with a water molecule through a AMP nucleosidase resulting in the release of a D-ribofuranose 5-phosphate and a adenine.
References
Adenine and Adenosine Salvage III References
Escherichia coli and Salmonella: Cellular and Molecular Biology (EcoSal). Online edition.
Petersen C, Moller LB: The RihA, RihB, and RihC ribonucleoside hydrolases of Escherichia coli. Substrate specificity, gene expression, and regulation. J Biol Chem. 2001 Jan 12;276(2):884-94. doi: 10.1074/jbc.M008300200.
Pubmed: 11027694
Xi H, Schneider BL, Reitzer L: Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage. J Bacteriol. 2000 Oct;182(19):5332-41.
Pubmed: 10986234
Leung HB, Schramm VL: Adenylate degradation in Escherichia coli. The role of AMP nucleosidase and properties of the purified enzyme. J Biol Chem. 1980 Nov 25;255(22):10867-74.
Pubmed: 7000783
Leung HB, Kvalnes-Krick KL, Meyer SL, deRiel JK, Schramm VL: Structure and regulation of the AMP nucleosidase gene (amn) from Escherichia coli. Biochemistry. 1989 Oct 31;28(22):8726-33.
Pubmed: 2690948
Craig JE, Zhang Y, Gallagher MP: Cloning of the nupC gene of Escherichia coli encoding a nucleoside transport system, and identification of an adjacent insertion element, IS 186. Mol Microbiol. 1994 Mar;11(6):1159-68. doi: 10.1111/j.1365-2958.1994.tb00392.x.
Pubmed: 8022285
Yamamoto Y, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kimura S, Kitagawa M, Makino K, Miki T, Mitsuhashi N, Mizobuchi K, Mori H, Nakade S, Nakamura Y, Nashimoto H, Oshima T, Oyama S, Saito N, Sampei G, Satoh Y, Sivasundaram S, Tagami H, Horiuchi T, et al.: Construction of a contiguous 874-kb sequence of the Escherichia coli -K12 genome corresponding to 50.0-68.8 min on the linkage map and analysis of its sequence features. DNA Res. 1997 Apr 28;4(2):91-113. doi: 10.1093/dnares/4.2.91.
Pubmed: 9205837
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Westh Hansen SE, Jensen N, Munch-Petersen A: Studies on the sequence and structure of the Escherichia coli K-12 nupG gene, encoding a nucleoside-transport system. Eur J Biochem. 1987 Oct 15;168(2):385-91. doi: 10.1111/j.1432-1033.1987.tb13431.x.
Pubmed: 3311747
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Meining W, Eberhardt S, Bacher A, Ladenstein R: The structure of the N-terminal domain of riboflavin synthase in complex with riboflavin at 2.6A resolution. J Mol Biol. 2003 Aug 29;331(5):1053-63. doi: 10.1016/s0022-2836(03)00844-1.
Pubmed: 12927541
Eberhardt S, Richter G, Gimbel W, Werner T, Bacher A: Cloning, sequencing, mapping and hyperexpression of the ribC gene coding for riboflavin synthase of Escherichia coli. Eur J Biochem. 1996 Dec 15;242(3):712-9. doi: 10.1111/j.1432-1033.1996.0712r.x.
Pubmed: 9022701
Hensel M, Shea JE, Baumler AJ, Gleeson C, Blattner F, Holden DW: Analysis of the boundaries of Salmonella pathogenicity island 2 and the corresponding chromosomal region of Escherichia coli K-12. J Bacteriol. 1997 Feb;179(4):1105-11. doi: 10.1128/jb.179.4.1105-1111.1997.
Pubmed: 9023191
Hershey HV, Taylor MW: Nucleotide sequence and deduced amino acid sequence of Escherichia coli adenine phosphoribosyltransferase and comparison with other analogous enzymes. Gene. 1986;43(3):287-93. doi: 10.1016/0378-1119(86)90218-0.
Pubmed: 3527873
Leung HB, Kvalnes-Krick KL, Meyer SL, deRiel JK, Schramm VL: Structure and regulation of the AMP nucleosidase gene (amn) from Escherichia coli. Biochemistry. 1989 Oct 31;28(22):8726-33. doi: 10.1021/bi00448a008.
Pubmed: 2690948
Morrison BA, Shain DH: An AMP nucleosidase gene knockout in Escherichia coli elevates intracellular ATP levels and increases cold tolerance. Biol Lett. 2008 Feb 23;4(1):53-6. doi: 10.1098/rsbl.2007.0432.
Pubmed: 18029299
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0002084
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings