Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
O-Antigen Building Blocks Biosynthesis
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-10-13
Last Updated: 2019-08-13
Lipopolysaccharide (LPS) is a major component of outer membrane which is consisted of lipid A-core (oligosaccharide) on both inner and outer region and O-antigen (known as distal repeating unit with four sugars: N-acetylglucosamine, glucose, rhamnose and galactose). O-antigen is part of three domains of LPS, which is attached to lipid A-core; however, O-antigen and lipid A-core are synthesized separately. In this pathway, synthesis of three of O-antigen sugars is demonstrated. UDP-α-D-galactose is converted to UDP-D-Galacto-1,4-furanose by facilitation of UDP-galactopyranose mutase. dTTP glucose-1-phosphate is derivatized to dTDP-rhamnose. Fructose-6-phosphate gains an amino group, incorporates an acetate moiety and then acquires a nucleoside diphosphate resulting in UDP-N-acetyl-D-glucosamine.
References
O-Antigen Building Blocks Biosynthesis References
Liu D, Reeves PR: Escherichia coli K12 regains its O antigen. Microbiology. 1994 Jan;140 ( Pt 1):49-57. doi: 10.1099/13500872-140-1-49.
Pubmed: 7512872
Nassau PM, Martin SL, Brown RE, Weston A, Monsey D, McNeil MR, Duncan K: Galactofuranose biosynthesis in Escherichia coli K-12: identification and cloning of UDP-galactopyranose mutase. J Bacteriol. 1996 Feb;178(4):1047-52. doi: 10.1128/jb.178.4.1047-1052.1996.
Pubmed: 8576037
Zhang Q, Liu H: Mechanistic investigation of UDP-galactopyranose mutase from Escherichia coli using 2- and 3-fluorinated UDP-galactofuranose as probes. J Am Chem Soc. 2001 Jul 18;123(28):6756-66. doi: 10.1021/ja010473l.
Pubmed: 11448178
Sanders DA, Staines AG, McMahon SA, McNeil MR, Whitfield C, Naismith JH: UDP-galactopyranose mutase has a novel structure and mechanism. Nat Struct Biol. 2001 Oct;8(10):858-63. doi: 10.1038/nsb1001-858.
Pubmed: 11573090
Stevenson G, Neal B, Liu D, Hobbs M, Packer NH, Batley M, Redmond JW, Lindquist L, Reeves P: Structure of the O antigen of Escherichia coli K-12 and the sequence of its rfb gene cluster. J Bacteriol. 1994 Jul;176(13):4144-56. doi: 10.1128/jb.176.13.4144-4156.1994.
Pubmed: 7517391
Itoh T, Aiba H, Baba T, Hayashi K, Inada T, Isono K, Kasai H, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Seki Y, Horiuchi T, et al.: A 460-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 40.1-50.0 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):379-92. doi: 10.1093/dnares/3.6.379.
Pubmed: 9097040
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Marolda CL, Valvano MA: Genetic analysis of the dTDP-rhamnose biosynthesis region of the Escherichia coli VW187 (O7:K1) rfb gene cluster: identification of functional homologs of rfbB and rfbA in the rff cluster and correct location of the rffE gene. J Bacteriol. 1995 Oct;177(19):5539-46. doi: 10.1128/jb.177.19.5539-5546.1995.
Pubmed: 7559340
Yao Z, Valvano MA: Genetic analysis of the O-specific lipopolysaccharide biosynthesis region (rfb) of Escherichia coli K-12 W3110: identification of genes that confer group 6 specificity to Shigella flexneri serotypes Y and 4a. J Bacteriol. 1994 Jul;176(13):4133-43. doi: 10.1128/jb.176.13.4133-4143.1994.
Pubmed: 7517390
Kabir MM, Shimizu K: Gene expression patterns for metabolic pathway in pgi knockout Escherichia coli with and without phb genes based on RT-PCR. J Biotechnol. 2003 Oct 9;105(1-2):11-31.
Pubmed: 14511906
Froman BE, Tait RC, Gottlieb LD: Isolation and characterization of the phosphoglucose isomerase gene from Escherichia coli. Mol Gen Genet. 1989 May;217(1):126-31. doi: 10.1007/bf00330951.
Pubmed: 2549364
Smith MW, Doolittle RF: Anomalous phylogeny involving the enzyme glucose-6-phosphate isomerase. J Mol Evol. 1992 Jun;34(6):544-5.
Pubmed: 1593646
Walker JE, Gay NJ, Saraste M, Eberle AN: DNA sequence around the Escherichia coli unc operon. Completion of the sequence of a 17 kilobase segment containing asnA, oriC, unc, glmS and phoS. Biochem J. 1984 Dec 15;224(3):799-815. doi: 10.1042/bj2240799.
Pubmed: 6395859
Reichenbach B, Maes A, Kalamorz F, Hajnsdorf E, Gorke B: The small RNA GlmY acts upstream of the sRNA GlmZ in the activation of glmS expression and is subject to regulation by polyadenylation in Escherichia coli. Nucleic Acids Res. 2008 May;36(8):2570-80. doi: 10.1093/nar/gkn091. Epub 2008 Mar 11.
Pubmed: 18334534
Burland V, Plunkett G 3rd, Daniels DL, Blattner FR: DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: organizational symmetry around the origin of replication. Genomics. 1993 Jun;16(3):551-61. doi: 10.1006/geno.1993.1230.
Pubmed: 7686882
Dallas WS, Dev IK, Ray PH: The dihydropteroate synthase gene, folP, is near the leucine tRNA gene, leuU, on the Escherichia coli chromosome. J Bacteriol. 1993 Dec;175(23):7743-4. doi: 10.1128/jb.175.23.7743-7744.1993.
Pubmed: 8244950
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
Mengin-Lecreulx D, van Heijenoort J: Identification of the glmU gene encoding N-acetylglucosamine-1-phosphate uridyltransferase in Escherichia coli. J Bacteriol. 1993 Oct;175(19):6150-7. doi: 10.1128/jb.175.19.6150-6157.1993.
Pubmed: 8407787
Mengin-Lecreulx D, van Heijenoort J: Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis. J Bacteriol. 1994 Sep;176(18):5788-95. doi: 10.1128/jb.176.18.5788-5795.1994.
Pubmed: 8083170
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Settings