
Loading Pathway...
Error: Pathway image not found.
Hide
Pathway Description
Methylglyoxal Degradation I
Escherichia coli
Category:
Metabolite Pathway
Sub-Category:
Metabolic
Created: 2015-10-14
Last Updated: 2025-05-31
The degradation of methylglyoxal starts with methylglyoxal being degraded by interacting with glutathione and a glyoxalase resulting in the release of a (R)-S-lactoylglutatione. This compound in turn reacts with a water molecule through a glyoxalase II resulting in the releas of glutathione, a hydrogen ion and an R-lactate. The R-lactate in turn reacts with an ubiquinone through a D-lactate dehydrogenase resulting in the release of an ubiquinol and a pyruvate which can then be incorporated the pyruvate metabolism
References
Methylglyoxal Degradation I References
Dym O, Pratt EA, Ho C, Eisenberg D: The crystal structure of D-lactate dehydrogenase, a peripheral membrane respiratory enzyme. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9413-8.
Pubmed: 10944213
Gonzalez CF, Proudfoot M, Brown G, Korniyenko Y, Mori H, Savchenko AV, Yakunin AF: Molecular basis of formaldehyde detoxification. Characterization of two S-formylglutathione hydrolases from Escherichia coli, FrmB and YeiG. J Biol Chem. 2006 May 19;281(20):14514-22. doi: 10.1074/jbc.M600996200. Epub 2006 Mar 27.
Pubmed: 16567800
Kalapos MP: Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications. Toxicol Lett. 1999 Nov 22;110(3):145-75.
Pubmed: 10597025
Ozyamak E, Black SS, Walker CA, Maclean MJ, Bartlett W, Miller S, Booth IR: The critical role of S-lactoylglutathione formation during methylglyoxal detoxification in Escherichia coli. Mol Microbiol. 2010 Dec;78(6):1577-90. doi: 10.1111/j.1365-2958.2010.07426.x. Epub 2010 Oct 29.
Pubmed: 21143325
Reiger M, Lassak J, Jung K: Deciphering the role of the type II glyoxalase isoenzyme YcbL (GlxII-2) in Escherichia coli. FEMS Microbiol Lett. 2015 Jan;362(2):1-7. doi: 10.1093/femsle/fnu014. Epub 2014 Dec 4.
Pubmed: 25670698
Escherichia coli and Salmonella: Cellular and Molecular Biology (EcoSal). Online edition.
Clugston SL, Daub E, Kinach R, Miedema D, Barnard JF, Honek JF: Isolation and sequencing of a gene coding for glyoxalase I activity from Salmonella typhimurium and comparison with other glyoxalase I sequences. Gene. 1997 Feb 20;186(1):103-11. doi: 10.1016/s0378-1119(96)00691-9.
Pubmed: 9047352
Clugston SL, Barnard JF, Kinach R, Miedema D, Ruman R, Daub E, Honek JF: Overproduction and characterization of a dimeric non-zinc glyoxalase I from Escherichia coli: evidence for optimal activation by nickel ions. Biochemistry. 1998 Jun 16;37(24):8754-63. doi: 10.1021/bi972791w.
Pubmed: 9628737
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science. 1997 Sep 5;277(5331):1453-62. doi: 10.1126/science.277.5331.1453.
Pubmed: 9278503
Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T: Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol. 2006;2:2006.0007. doi: 10.1038/msb4100049. Epub 2006 Feb 21.
Pubmed: 16738553
O'Young J, Sukdeo N, Honek JF: Escherichia coli glyoxalase II is a binuclear zinc-dependent metalloenzyme. Arch Biochem Biophys. 2007 Mar 1;459(1):20-6. doi: 10.1016/j.abb.2006.11.024. Epub 2006 Dec 6.
Pubmed: 17196158
Campbell HD, Rogers BL, Young IG: Nucleotide sequence of the respiratory D-lactate dehydrogenase gene of Escherichia coli. Eur J Biochem. 1984 Oct 15;144(2):367-73. doi: 10.1111/j.1432-1033.1984.tb08473.x.
Pubmed: 6386470
Rule GS, Pratt EA, Chin CC, Wold F, Ho C: Overproduction and nucleotide sequence of the respiratory D-lactate dehydrogenase of Escherichia coli. J Bacteriol. 1985 Mar;161(3):1059-68.
Pubmed: 3882663
Kohn LD, Kaback HR: Mechanisms of active transport in isolated bacterial membrane vesicles. XV. Purification and properties of the membrane-bound D-lactate dehydrogenase from Escherichia coli. J Biol Chem. 1973 Oct 25;248(20):7012-7.
Pubmed: 4582730
Nishida M, Kong KH, Inoue H, Takahashi K: Molecular cloning and site-directed mutagenesis of glutathione S-transferase from Escherichia coli. The conserved tyrosyl residue near the N terminus is not essential for catalysis. J Biol Chem. 1994 Dec 23;269(51):32536-41.
Pubmed: 7798255
Aiba H, Baba T, Hayashi K, Inada T, Isono K, Itoh T, Kasai H, Kashimoto K, Kimura S, Kitakawa M, Kitagawa M, Makino K, Miki T, Mizobuchi K, Mori H, Mori T, Motomura K, Nakade S, Nakamura Y, Nashimoto H, Nishio Y, Oshima T, Saito N, Sampei G, Horiuchi T, et al.: A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0-40.1 min region on the linkage map. DNA Res. 1996 Dec 31;3(6):363-77. doi: 10.1093/dnares/3.6.363.
Pubmed: 9097039
This pathway was propagated using PathWhiz -
Pon, A. et al. Pathways with PathWhiz (2015) Nucleic Acids Res. 43(Web Server issue): W552–W559.
Propagated from SMP0002125
Highlighted elements will appear in red.
Highlight Compounds
Highlight Proteins
Enter relative concentration values (without units). Elements will be highlighted in a color gradient where red = lowest concentration and green = highest concentration. For the best results, view the pathway in Black and White.
Visualize Compound Data
Visualize Protein Data
Downloads
Settings